

REPORT

2022 Annual Groundwater Monitoring & Corrective Action Report

RD Morrow Generating Station, Purvis, Lamar County, Mississippi, USA

Submitted to:

Cooperative Energy

7037 US Hwy 49, Hattiesburg, MS 39402

Executive Summary

This report presents the 2022 Annual Groundwater Monitoring & Corrective Action Report, R.D. Morrow, Sr. Generating Station, Purvis, Lamar County, Mississippi. Groundwater monitoring and reporting for the Morrow facility is performed in accordance with the United States Environmental Protection Agency (US EPA) Coal Combustion Residual (CCR) Rule published in the Code of Federal Regulations Title 40 Part 257 (40 CFR Part 257, Subpart D) dated April 17, 2015, 40 CFR § 257.50 through § 257.107. As required in 40 CFR § 257.90(e), this Annual Report describes the status of the groundwater monitoring program, summarizes key actions completed, describes any problems encountered, discusses actions to resolve the problems, and presents key activities for the upcoming year.

The *R.D. Morrow, Sr. Generating Station* (Site or RD Morrow) has a single CCR unit. The CCR Landfill Unit has continued Assessment Monitoring in accordance with § 257.95, filing the Notice of Establishment of Assessment Monitoring Program on May 16, 2018. Due to the constituent concentrations exceeding the statistical limits, as described more fully within this report, the Site began and ended the 2022 annual reporting period in assessment monitoring.

2022 Groundwater Monitoring Activities for the CCR Landfill Unit

- The Assessment of Corrective Measures (ACM) began on May 15, 2019. The corrective measures assessment was ongoing throughout 2022. Semi-annual remedy progress reports in the spring and fall of 2022 discuss these efforts.
- Groundwater monitoring sampling events for the CCR Landfill Unit were conducted in February (Annual), and in April (Semi-annual) and September 2022 (Semi-annual). Groundwater samples were collected and analyzed for both Appendix III and Appendix IV constituents from the Landfill unit CCR monitoring well network.
- Pursuant to 40 CFR § 257.90 (e)(6)(iii)-(iv), the following table presents the Appendix III and IV constituents with SSIs or SSLs, respectively, for the CCR Landfill Unit.

Statistically Significant Increases (SSIs)	
Appendix III Constituent	April 2022	September 2022
Boron	MW-3, MW-4, MW-5	MW-3, MW-4, MW-5
Calcium	MW-3, MW-4, MW-5	MW-3, MW-4, MW-5
рН	MW-3, MW-5	MW-3, MW-5
Sulfate	MW-3, MW-4, MW-5	MW-3, MW-4, MW-5
TDS	MW-3, MW-4, MW-5	MW-3, MW-4, MW-5
Statistically Significant Levels (SSI	_s)	
Appendix IV Constituent	April 2022	September 2022
Lithium	MW-5	MW-5
Molybdenum	MW-5	MW-5

- In accordance with 40 CFR § 257.96(e), Cooperative Energy held a public meeting on September 27, 2022, at the Purvis Community Center in Purvis, Mississippi, to discuss the results of the corrective measures assessment for the CCR Landfill Unit.
- At the end of 2022, Cooperative Energy was in the process of finalizing its selection of a remedy and report describing the selected remedy in accordance with the requirements of § 257.97.

Based on review of the Appendix III and Appendix IV statistical results completed for the groundwater monitoring and corrective action program during the 2022 reporting period, the CCR Landfill Unit will remain in assessment monitoring.

Table of Contents

EXECUTIVE SUMMARY

1.0	INTR	ODUCTION	1
	1.1	Purpose	1
	1.2	Site Description and Background	1
	1.3	CCR Landfill Unit Groundwater Monitoring Well Network	1
2.0	CCR	LANDFILL UNIT GROUNDWATER MONITORING ACTIVITIES	2
	2.1	CCR Landfill Unit Assessment Monitoring	2
	2.2	Groundwater Sampling and Laboratory Analysis	2
	2.2.1	Groundwater Level Measurements	2
	2.2.2	Groundwater Gradient and Flow Velocity	2
	2.2.3	Groundwater Sampling	3
3.0	СОМІ	PARATIVE STATISTICAL ANALYSES	4
	3.1	Groundwater Protection Standards (GWPS)	4
	3.2	CCR Landfill Unit Statistical Analyses	5
4.0	ASSE	ESSMENT OF CORRECTIVE MEASURES	5
5.0	REME	EDY SELECTION	5
6.0	PROC	GRAM TRANSITIONS	6
7.0	PROE	BLEMS ENCOUNTERED AND ACTIONS TO RESOLVE IN 2022	6
8.0	CON	CLUSIONS & FUTURE ACTIONS	6
0.0	DEEE	EDENCES	6

FIGURES

Figure 1: Site Location Map Figure 2: Well Location Map

Figure 3A: First Semi-Annual 2022 Potentiometric Surface Elevation Contour Map -

(April 26, 2022)

Figure 3B: Second Semi-Annual 2022 Potentiometric Surface Elevation Contour Map -

(September 22, 2022)

TABLES

Table 1: Analytical Data Summary – CCR Landfill (February 2022)
 Table 2: Analytical Data Summary – CCR Landfill (April 2022)
 Table 3: Analytical Data Summary – CCR Landfill (September 2022)

APPENDICES

Appendix A: Analytical Data and Field Data Forms

Appendix B: Statistical Analysis

Certification

This 2022 Annual Groundwater Monitoring & Corrective Action Report, R.D. Morrow, Sr. Generating Station, Purvis, Lamar County, Mississippi, USA has been prepared to comply with the United States Environmental Protection Agency (EPA) Coal Combustion Residuals (CCR) rule (40 CFR Part 257 Subpart D, published in 80 FR 21302-21501 (April 17, 2015) under the direction of a licensed professional engineer, with WSP USA Inc.

WSP USA Inc.

Dayna L. Kent

Senior Consultant, Geologist

Dawn L. Prell, CPG

Technical Principal, Hydrogeologist

Dam L Prell

I hereby certify that this 2022 Annual Groundwater Monitoring & Corrective Action Report, R.D. Morrow, Sr. Generating Station, located at 304 Old Okahola School Road, Purvis, Lamar County, MS 39475 has been prepared to meet the requirements of 40 CFR § 257.90(e).

Daniel Smith, PE Senior Associate, Engineer-Civil Mississippi PE No, 32180

dlk/dlp

1.0 INTRODUCTION

This 2022 Annual Groundwater Monitoring and Corrective Action Report (Annual Report) has been prepared by WSP USA Inc. (WSP) for the RD Morrow Generating Station (RD Morrow or Site) operated by Cooperative Energy.

1.1 Purpose

The United States Environmental Protection Agency (US EPA) Coal Combustion Residual (CCR) Rule was published in the Code of Federal Regulations Title 40 Part 257 (40 CFR Part 257, Subpart D) on April 17, 2015. The Rule identifies an effective date of October 19, 2015. The CCR Rule regulates CCRs as non-hazardous waste under Subtitle D of the Resource Conservation and Recovery Act (RCRA) and applies to new and existing landfills and surface impoundments.

As required in 40 CFR § 257.90(e), this Annual Report describes the status of the groundwater monitoring program, summarizes key actions completed, describes any problems encountered, discusses actions to resolve the problems, and presents project key activities for the upcoming year. Groundwater monitoring and reporting for RD Morrow are performed in accordance with the requirements of 40 CFR § 257.90 through § 257.98. This report documents the activities completed during the 2022 calendar year.

1.2 Site Description and Background

RD Morrow is located in the community of Okahola, a rural area of Lamar County, approximately 4.5 miles north of the City of Purvis and 8 miles southwest of Hattiesburg. Old Okahola School Road bisects the property into a northern and southern parcel. The location of the Site property and surrounding area are shown on Figure 1, Site Location Map.

The CCR Landfill Unit is the only CCR unit currently subject to the CCR Rule. Previously, a surface impoundment unit was subject to the CCR Rule and remained in detection monitoring until completion of closure by removal. The associated wells were decommissioned and abandoned in 2022. Figure 2 identifies the CCR Landfill Unit within the south parcel at RD Morrow.

1.3 CCR Landfill Unit Groundwater Monitoring Well Network

The groundwater monitoring network for the CCR Landfill Unit consists of five (5) detection monitoring wells and one (1) assessment monitoring well, as shown on Figure 2. CCR monitoring wells are included in the monitoring network screened within the reworked Citronelle sequence underlying the CCR Landfill Unit. In accordance with 40 CFR § 257.91, the CCR Landfill Unit groundwater monitoring network contains monitoring wells, installed at the waste boundary, and represents the quality of groundwater in the uppermost aquifer. The network for the events covered by this Annual Report include:

- One upgradient detection monitoring well: MW-2
- Four downgradient detection monitoring wells: MW-3, MW-4, MW-5, and MW-6
- One assessment monitoring well: MW-10.
- There were no changes to the landfill certified detection groundwater monitoring network or the assessment monitoring network during the 2022 calendar year.

WSD

Additional monitoring well-related activities to ensure continued compliance with 40 CFR § 257.91(e) included a visual inspection of well conditions for the CCR Landfill Unit monitoring well network prior to sampling, recording the site conditions, and any site maintenance to provide safe access for sampling. The network wells were found to be of sound integrity and in proper working order during each of the sampling events and did not require any repairs.

2.0 CCR LANDFILL UNIT GROUNDWATER MONITORING ACTIVITIES

In accordance with 40 CFR § 257.90(e), the following describes monitoring-related activities performed during the 2022 calendar year. Groundwater sampling was performed in accordance with 40 CFR § 257.93, as follows:

2.1 CCR Landfill Unit Assessment Monitoring

Cooperative Energy posted a Notice of Establishment of Assessment Monitoring Program for RD Morrow CCR Landfill Unit, dated May 16, 2018. Groundwater samples were collected for both Appendix III and Appendix IV constituents from each of the monitoring wells. In February 2022, Cooperative Energy conducted the annual Appendix IV monitoring event pursuant to 40 CFR § 257.95(b). The results were analyzed to determine which constituents were detected and required resampling, as required by 40 CFR § 257.95(d)(1). The 2022 semi-annual monitoring events were then conducted in April and September 2022.

2.2 Groundwater Sampling and Laboratory Analysis

The following sections describe methods used to conduct groundwater monitoring at the CCR Landfill Unit.

2.2.1 Groundwater Level Measurements

Prior to sampling, Environmental Management Services, Inc. recorded groundwater elevations from each detection and assessment monitoring well on April 26, and September 22, 2022. The April and September 2022 elevation data was used to develop potentiometric surface elevation contour maps to confirm the groundwater flow direction and to confirm that the groundwater monitoring well network for the CCR Landfill Unit remains sufficient to monitor groundwater downgradient of the unit. The direction of groundwater flow has not changed, which has been consistent since the inception of the CCR monitoring program at RD Morrow. Groundwater flows south, based on 2022 groundwater elevation contour maps, included as Figures 3A, First Semi-Annual 2022 Potentiometric Surface Elevation Contour Map (April 26, 2022) and 3B, Second Semi-Annual 2022 Potentiometric Surface Elevation Contour Map (September 22, 2022). No changes to the monitoring well network are necessary based on groundwater elevation data.

2.2.2 Groundwater Gradient and Flow Velocity

Groundwater flow rates at the Site were calculated based on hydraulic gradients, hydraulic conductivity from previous slug test results, and an estimated effective porosity of the screened horizon. Based on slug test data at the Site (EMS, 2020 and EMS, 2022), an average hydraulic conductivity value of 4.8 to 141.1 ft/day to is used in the flow calculations. The hydraulic gradients were calculated between well pairs as shown below. Based on historical groundwater investigation (EMS, 2022), the effective porosity of 0.30 was used in the calculation.

Horizontal flow velocity was calculated using the commonly used derivative of Darcy's Law:

Using this equation and groundwater elevations collected during both April 2022 and September 2022 sampling events, horizontal groundwater velocities are calculated for various areas of the Site and shown below.

			Т	able 2.2.2 Gı	roundwater Flov	w Velocity			
Well		ΔН	ΔL	Hydraulic Gradient	Average Hydraulic Conductivity	Assumed Effective	Average Linear Groundwater Velocity ^[6]		
Pairs	Date	(feet) ^[1]	(feet) ^[2]	[3] (Δ H/Δ L)	^[4] , K (feet per day)	Porosity [5] (n _e)	(feet per day)	(feet per year) [7]	
MW-02	4/26/2022	5.29	884	0.00598	4.8		0.096	34.95	
MW-05	9/22/2022	5.27	001	0.00596	1.0	0.30	0.095	34.82	
MW-05	4/26/2022	12.26	1090	0.0112	4.8 to 141.1	0.00	0.180	1930.91	
MW-10	9/22/2022	13.17	1090	0.0121	4.0 (0 141.1		0.193	2074.23	

Notes:

- 1. $\Delta H =$ Change in groundwater elevation.
- 2. Δ L = Distance along flow path.
- 3. $I = \Delta H / \Delta L$. Hydraulic gradient determined from groundwater well pairs along with potentiometric surface elevation contour maps
- K Range is based on the 38th Landfill Groundwater Monitoring Event Report by Environmental Management Services, Inc., dated April 23, 2022 and aquifer performance tests presented in the CCR Landfill Assessment Monitoring Well Installation Certification Report by Environmental Management Services, Inc., dated March 5, 2020.
- Effective porosity based on the 38th Landfill Groundwater Monitoring Event Report by Environmental Management Services, Inc., dated April 23, 2020.
- 6. Velocity = (I * K)/n_e
- 7. Based on 365 days per year

As presented above, groundwater flow velocity at the Site ranges from approximately 0.096 to 0.180 ft/day (approximately 35 to 1931 ft/year) in April 2022, and from approximately 0.095 to 0.193 ft/day (approximately 35 to 2074 ft/year) in September 2022. These calculated groundwater velocities at the Site are generally consistent with historical calculations, therefore, confirming the groundwater monitoring network is properly located to monitor the uppermost aquifer for the CCR Landfill Unit.

2.2.3 Groundwater Sampling

Groundwater samples were collected from Site detection monitoring wells in April and September 2022. Monitoring wells were purged and sampled using low-flow sampling procedures. Sample stabilization criteria is identified on field sampling forms. Following well stabilization, unfiltered samples were collected directly into appropriately preserved laboratory supplied sample containers, placed in iced coolers, and submitted to the

laboratory following standard chain-of-custody protocol. Field data forms and Chain-of-Custody records are provided in Appendix A.

Groundwater samples were collected in accordance with 40 CFR § 257.93(a). Field sampling procedures included sample collection, field quality assurance/quality control (QA/QC), chain-of-custody controls, and field documentation. The groundwater samples for the CCR Landfill Unit for 2022 sampling events were analyzed for Appendix III and Appendix IV constituents, and results are summarized in Table 1 - Analytical Data Summary – CCR Landfill (February 2022), Table 2 - Analytical Data Summary – CCR Landfill (April 2022), and Table 3 - Analytical Data Summary – CCR Landfill (September 2022). Analytical methods used for groundwater monitoring parameters are provided in laboratory reports. Laboratory analyses were performed by Micro Methods Laboratory, Inc. and Pace Analytical Services, LLC and are included in Appendix A.

3.0 COMPARATIVE STATISTICAL ANALYSES

Pursuant to 40 CFR § 257.93(f), the statistical methodology selected for RD Morrow meets the criteria referenced in the CCR Rule and the 2009 EPA Statistical Analysis of Groundwater Monitoring Data at Resource Conservation and Recovery Act (RCRA) Facilities Unified Guidance (EPA, 2009) and is consistent with the Statistical Analysis Plan (EMS, 2017).

Statistical analyses of Appendix III constituents were completed for the CCR Landfill Unit. In the sections below, Cooperative Energy provides a summary of the comparative statistical analyses completed in 2022, which includes the analyses for both semi-annual monitoring events conducted in 2022 for the CCR Landfill Unit.

3.1 Groundwater Protection Standards (GWPS)

Interwell tolerance limits were used to calculate background limits from pooled upgradient well data for Appendix IV parameters with a target of 95% confidence and 95% coverage in accordance with the *Statistical Analysis Plan* (EMS, 2017). Results of the statistical analyses following the September 2022 monitoring event are included in Appendix C.

A GWPS has been established for statistical comparison of each Appendix IV constituent for the CCR Landfill Unit. The Summary of Background Levels and GWPS table presented below, summarizes the site-specific background concentration for each monitoring event and the GWPS established under Federal rules. Where the background concentration is higher than the federal MCL, the background concentration is utilized as the GWPS for that constituent.

If the comparison of the constituent's lower confidence interval is greater than the GWPS, a statistically significant level (SSL) is identified for that well.

		Table 3.1 Summa	ary of Background I	_evels and (GWPS	
Amabata[1]	Units	Site Specific	Background	Federal	G	WPS
Analyte ^[1]	Units	April 2022	September 2022	MCL	April 2022	September 2022
Barium	mg/L	0.029	0.029	2	2	2
Beryllium	mg/L	0.009616	0.009669	0.004	0.009616	0.009669
Cobalt	mg/L	0.1708	0.1749	0.006	0.1708	0.1749
Fluoride	mg/L	1.127	1.109	4	4	4
Lead	mg/L	0.009869	0.009752	0.015	0.015	0.015
Lithium	mg/L	1.42	1.42	0.04	1.42	1.42
Molybdenum	mg/L	0.0025	0.0025	0.1	0.1	0.1
Radium (226 + 228)	pCi/L	3.045	3.136	5	5	5

Notes:

mg/L - milligrams per liter

pCi/L - picocuries per liter

[1] Analytes not detected during the annual scan are not presented.

3.2 CCR Landfill Unit Statistical Analyses

Analytical data from the April 2022 and September 2022 monitoring events for the CCR Landfill Unit monitoring network have been statistically analyzed in accordance with the site's certified statistical analysis method. Review of the Sanitas™ results indicates that verified exceedances of the established prediction limits for Appendix III constituents continue to be observed. Using the GWPS established according to 40 CFR § 257.95(h), SSLs were identified at MW-05 for lithium and molybdenum following the 2022 monitoring events.

4.0 ASSESSMENT OF CORRECTIVE MEASURES

Following the requirements of 40 CFR § 257.96, RD Morrow initiated an Assessment of Corrective Measures (ACM). Notification of this action was placed in the operating record on September 12, 2019 (Golder, 2019).

5.0 REMEDY SELECTION

Pursuant to 40 CFR § 257.97(a), at the end of December 2022, Cooperative Energy was completing its assessment of corrective measures and remedy selection process for groundwater corrective action. Remedy selection efforts were documented in the Semi-Annual Remedy Selection and Design Progress Reports (Progress Reports) for Cooperative Energy's RD Morrow Generating Station's CCR Landfill Unit in March and September 2022. These reports describe the progress made in selecting and designing a remedy and future planned activities. The progress reports for the 2022 annual period are listed below.

- First Semi-Annual 2022 Remedy Selection and Design Progress Report Cooperative Energy, RD Morrow CCR Landfill, prepared by Golder Associates Inc., dated March 11, 2022.
- Second Semi-Annual 2022 Remedy Selection and Design Progress Report Cooperative Energy, RD Morrow CCR Landfill, prepared by Golder Associates Inc., dated September 12, 2022.

^[2] The lithium GWPS was calculated using data from MW-02, MW-03 and MW-04 because naturally-occurring lithium is present in soils and bedrock at the Site. Therefore, it was necessary to adjust the lithium GWPS for the Site accordingly. See Golder, 2020, Alternate Source Demonstration RD Morrow Generating Station – Landfill CCR Unit, Purvis, Mississippi. Golder Prepared for Cooperative Energy, Inc. September 11, 2020.

On September 27, 2022, Cooperative Energy held a public meeting to discuss the results of the corrective measures assessment. In advance, Cooperative Energy advertised the meeting by local newspaper, its website, and physical announcements in Lamar County (courthouse and public libraries).

6.0 PROGRAM TRANSITIONS

There were no groundwater monitoring program transitions for the CCR Landfill Unit in 2022.

7.0 PROBLEMS ENCOUNTERED AND ACTIONS TO RESOLVE IN 2022

There were no specific problems encountered with the CCR Landfill Unit monitoring well system in 2022.

8.0 CONCLUSIONS & FUTURE ACTIONS

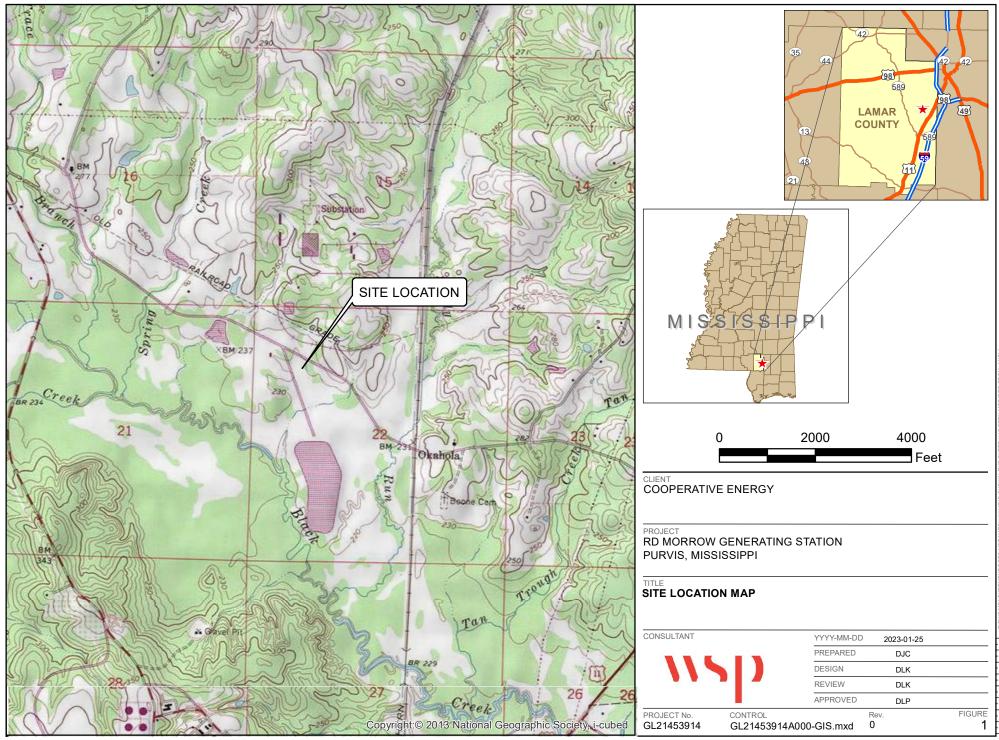
This 2022 Annual Groundwater Monitoring and Corrective Action Report has been prepared in accordance with 40 CFR § 257.90(e) and describes the status of the groundwater monitoring program during the 2022 calendar year and key actions for the upcoming calendar year 2023.

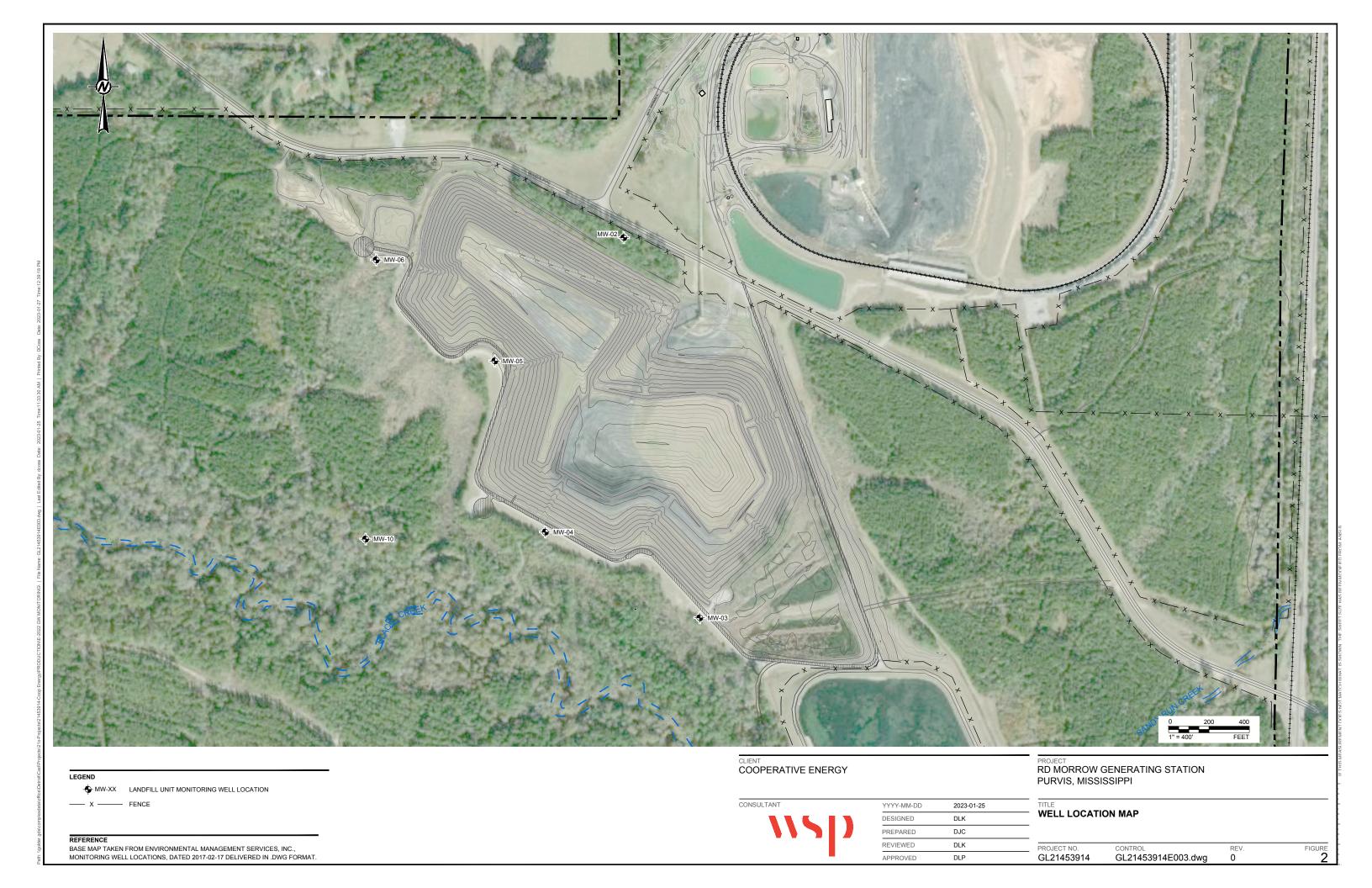
Project Key Activities for 2023

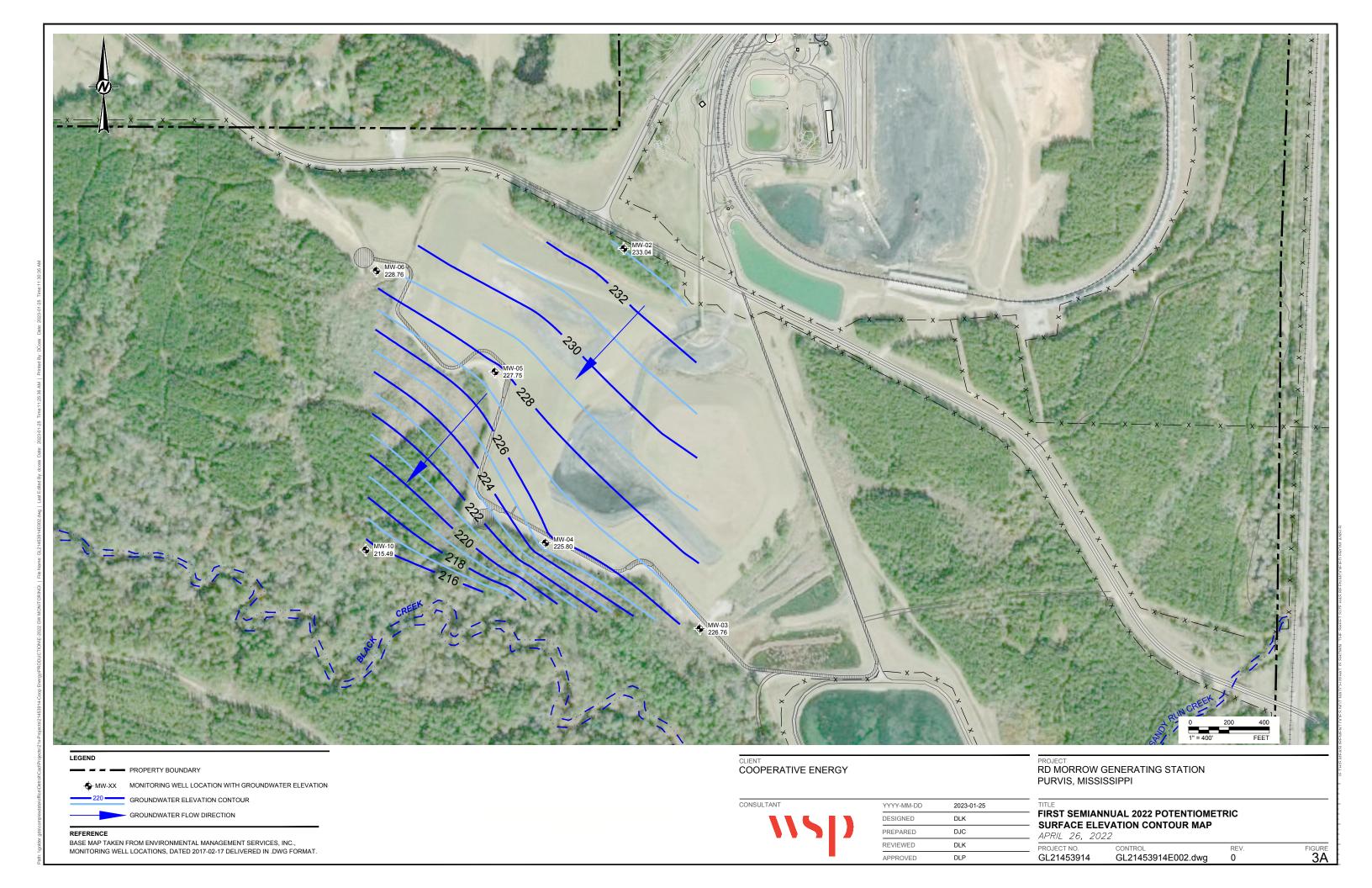
The proposed activities for the 2023 calendar year include:

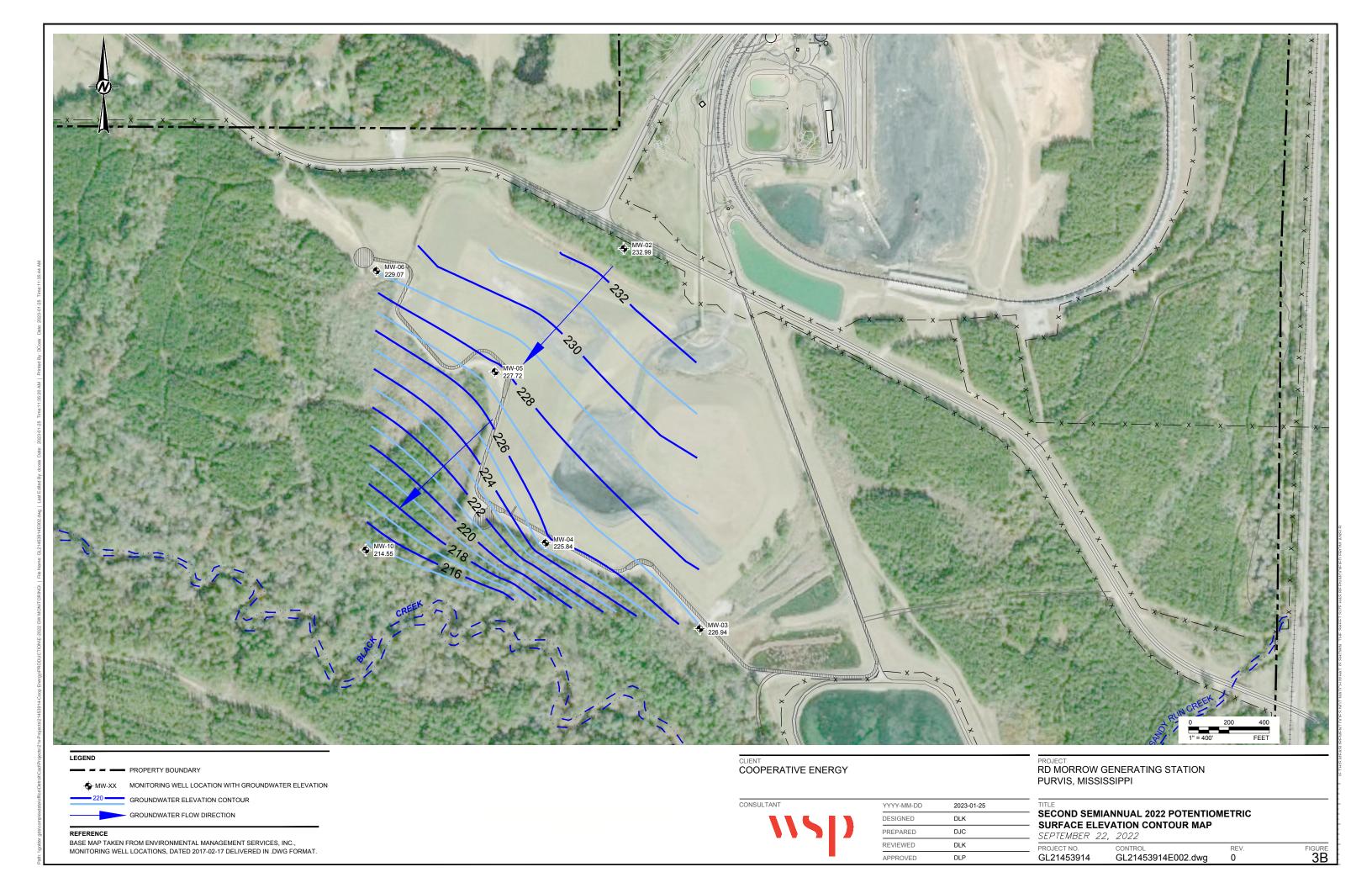
- Semi-annual assessment monitoring will continue, as required by 40 CFR § 257.94 and 40 CFR § 257.95
- Selection of a remedy, including completion of the Remedy Selection Report
- Implementation of the final remedy selected for groundwater corrective action
- Completion of the Correction Action Groundwater Monitoring Plan; and
- Implementation of the long-term groundwater monitoring program.

9.0 REFERENCES


- EMS, 2020. CCR Landfill Assessment Monitoring Well Installation Certification Report, RD Morrow Generating Plant, Lamar County, Mississippi. Environmental Management Services, Inc. Prepared for Cooperative Energy. March 5, 2020
- EMS, 2022. 38th Landfill Groundwater Monitoring Event Report by Environmental Management Services, Inc, RD Morrow Generating Plant, Lamar County, Mississippi. Environmental Management Services, Inc. Prepared for Cooperative Energy. April 23, 2022
- EMS, 2017. Statistical Analysis Plan, RD Morrow Generating Station, Lamar County, Mississippi. Environmental Management Services, Inc. Prepared for Cooperative Energy, Inc. December 21, 2017.
- Golder, 2019, Assessment of Corrective Measures RD Morrow Generating Station Landfill CCR Unit, Hattiesburg, Mississippi. Golder Prepared for Cooperative Energy, Inc. September 12, 2019.
- Golder, 2020, Alternate Source Demonstration RD Morrow Generating Station Landfill CCR Unit, Purvis, Mississippi. Golder Prepared for Cooperative Energy, Inc. September 11, 2020.
- USEPA, 2015, Federal Register. volume 80. No. 74. Friday April 17, 2015. Part II. Environmental Protection Agency. 40 CFR Parts 257 and 261. Hazardous and Solid Waste Management System; Disposal of Coal


\\S[)


Combustion Residuals from Electric Utilities; Final Rule. [EPA HQ RCRA-2009-0640; FRL-9919-44-08 CSWER]. RIN-2050-AE81


 $https://golder associates. share point.com/sites/104953/project files/200 reports/annual gwmcar/2022/2023.01.31_rd morrow annual report 2022.docx and the contract of the co$

Figures

Tables

TABLE 1: ANALYTICAL DATA SUMMARY - CCR Landfill (February 2022) RD Morrow Generating Station - Purvis, Mississippi

Analyte	Units		ASSESSMENT MONITORING WELL				
,		MW-02	MW-03	MW-04	MW-05	MW-06	MW-10
	Sample Date:	2/8/2022	2/8/2022	2/7/2022	2/7/2022	2/7/2022	2/7/2022
Appendix IV							
ANTIMONY, TOTAL	mg/L	<0.00200	<0.00200	<0.00200	<0.00200	<0.00200	<0.00200
ARSENIC, TOTAL	mg/L	<0.00200	<0.00200	<0.00200	<0.00200	<0.00200	<0.00200
BARIUM, TOTAL	mg/L	0.029	0.038	0.039	0.061	0.155	0.035
BERYLLIUM, TOTAL	mg/L	0.00470	<0.00400	<0.00400	<0.00400	<0.00400	0.00932
CADMIUM, TOTAL	mg/L	<0.00500	<0.00500	<0.00500	<0.00500	<0.00500	<0.00500
CHROMIUM, TOTAL	mg/L	<0.0100	<0.0100	<0.0100	<0.0100	<0.0100	<0.0100
COBALT, TOTAL	mg/L	0.0956	0.0249	0.0263	0.0152	0.00156	0.0893
FLUORIDE, TOTAL	mg/L	0.51	<0.50	<0.50	<0.50	<0.50	<0.50
LEAD, TOTAL	mg/L	0.00241	0.00604	<0.00100	<0.00100	<0.00100	0.00256
LITHIUM, TOTAL	mg/L	<0.040	0.198	<0.040	2.14	<0.040	0.352
MERCURY, TOTAL	mg/L	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002
MOLYBDENUM, TOTAL	mg/L	<0.00500	<0.00500	<0.00500	2.59	<0.00500	<0.00500
RADIUM (226 + 228)	pCi/L	1.479U	2.186	1.535	1.439U	1.664	1.537
SELENIUM, TOTAL	mg/L	<0.0500	<0.0500	<0.0500	<0.0500	<0.0500	<0.0500
THALLIUM, TOTAL	mg/L	<0.00200	<0.00200	<0.00200	<0.00200	<0.00200	<0.00200

NOTES:

- 1. mg/L Milligrams per Liter; pCi/L picocuries per Liter
- 2. < Constituent was analyzed for, but was not detected above the minium reporting limit (MRL) and is considered a non-detect. Value is displayed as less than the MRL.
- 3. Radium data is a combination of radium isotopes 226 and 228. When results are reported below the MDC (Minimum Detectable Concentration), data is displayed with an accompanying U. The MDC varies depending upon the sample amount and elapsed time of the measurement.
- 4. Detected values are BOLDED and do not mean an exceedance is identified.
- 5. Analytes with striketrough did not have detections in monitoring well network and do not need to be sampled for during the semi-annual monitoring events.

TABLE 2: ANALYTICAL DATA SUMMARY - CCR Landfill (April 2022) RD Morrow Generating Station - Purvis, Mississippi

Analyte	Units			ASSESSMENT MONITORING WELL			
, , , ,		MW-02	MW-03	MW-04	MW-05	MW-06	MW-10
	Sample Date:	4/27/2022	4/27/2022	4/26/2022	4/26/2022	4/26/2022	4/26/2022
Appendix III							
BORON, TOTAL	mg/L	0.934	5.77	8.32	12.4	0.053	5.42
CALCIUM, TOTAL	mg/L	74	464	433	617	2.40	101
CHLORIDE, TOTAL	mg/L	82.6	113	124	177	6.61	188
FLUORIDE, TOTAL	mg/L	0.57	<0.50	<0.50	<0.50	<0.50	0.65
рН	S.U.	4.59	5.35	4.94	6.56	4.91	3.74
SULFATE, TOTAL	mg/L	365	1920	1850	1760	10.3	731
TOTAL DISSOLVED SOLIDS	mg/L	649	2762	2788	3417	62	1114
Appendix IV							
ANTIMONY, TOTAL	mg/L	Not Required	Not Required	Not Required	Not Required	Not Required	Not Required
ARSENIC, TOTAL	mg/L	Not Required	Not Required	Not Required	Not Required	Not Required	Not Required
BARIUM, TOTAL	mg/L	0.023	0.032	0.028	0.050	0.112	0.025
BERYLLIUM, TOTAL	mg/L	<0.00400	<0.00400	<0.00400	<0.00400	<0.00400	0.00754
CADMIUM, TOTAL	mg/L	Not Required	Not Required	Not Required	Not Required	Not Required	Not Required
CHROMIUM, TOTAL	mg/L	Not Required	Not Required	Not Required	Not Required	Not Required	Not Required
COBALT, TOTAL	mg/L	0.0898	0.0249	0.0462	0.0143	0.00165	0.123
FLUORIDE, TOTAL	mg/L	0.57	<0.50	<0.50	<0.50	<0.50	0.65
LEAD, TOTAL	mg/L	0.00182	0.00289	0.00119	<0.00100	<0.00100	0.00290
LITHIUM, TOTAL	mg/L	<0.040	0.258	0.391	2.83	<0.040	0.429
MERCURY, TOTAL	mg/L	Not Required	Not Required	Not Required	Not Required	Not Required	Not Required
MOLYBDENUM, TOTAL	mg/L	<0.00500	<0.00500	<0.00500	1.95	0.00579	<0.00500
RADIUM (226 + 228)	pCi/L	1.0191U	1.388	0.8084U	0.538U	0.793U	1.163
SELENIUM, TOTAL	mg/L	Not Required	Not Required	Not Required	Not Required	Not Required	Not Required
THALLIUM, TOTAL	mg/L	Not Required	Not Required	Not Required	Not Required	Not Required	Not Required

NOTES:

- 1. mg/L Milligrams per Liter; pCi/L picocuries per Liter
- 2. < Constituent was analyzed for, but was not detected above the minium reporting limit (MRL) and is considered a non-detect. Value is displayed as less than the MRL.
- 3. Radium data is a combination of radium isotopes 226 and 228. When results are reported below the MDC (Minimum Detectable Concentration), data is displayed with an accompanying U. The MDC varies depending upon the sample amount and elapsed time of the measurement.
- 4. Not Required constituent analysis is not required per 40 CFR 257.96. Annual scan of the Appendix IV constituents is conducted along with semi-annual monitoring for those constituents in Appendix III and those Appendix IV constituents detected during the annual scan event.
- 5. Bolded data indicates an exceedance of the PL for appendix III constituents and a statistically significant level based on 95% confidence interval above the Groundwater Protection Standard (GWPS) for appendix IV constituents.

TABLE 3: ANALYTICAL DATA SUMMARY - CCR Landfill (September 2022) RD Morrow Generating Station - Purvis, Mississippi

Analyte	Units		DETECTION MONITORING WELLS								
,		MW-02	MW-03	MW-04	MW-05	MW-06	MW-10				
	Sample Date:	9/23/2022	9/23/2022	9/22/2022	9/22/2022	9/22/2022	9/22/2022				
Appendix III											
BORON, TOTAL	mg/L	0.863	7.38	9.32	12.7	0.055	4.16				
CALCIUM, TOTAL	mg/L	56.6	416	417	588	2.19	81.3				
CHLORIDE, TOTAL	mg/L	103	137	125	175	7.75	169				
FLUORIDE, TOTAL	mg/L	0.52	<0.50	<0.50	<0.50	<0.50	0.55				
рН	S.U.	4.20	5.33	5.06	6.49	4.71	3.77				
SULFATE, TOTAL	mg/L	274	1640	1670	1770	12.1	449				
TOTAL DISSOLVED SOLIDS	mg/L	565	3253	3167	4130	63	1245				
Appendix IV											
ANTIMONY, TOTAL	mg/L	Not Required	Not Required	Not Required	Not Required	Not Required	Not Required				
ARSENIC, TOTAL	mg/L	Not Required	Not Required	Not Required	Not Required	Not Required	Not Required				
BARIUM, TOTAL	mg/L	0.025	0.042	0.039	0.061	0.116	0.024				
BERYLLIUM, TOTAL	mg/L	<0.00400	<0.00400	<0.00400	<0.00400	<0.00400	0.00953				
CADMIUM, TOTAL	mg/L	Not Required	Not Required	Not Required	Not Required	Not Required	Not Required				
CHROMIUM, TOTAL	mg/L	Not Required	Not Required	Not Required	Not Required	Not Required	Not Required				
COBALT, TOTAL	mg/L	0.0729	0.0249	0.0378	0.0109	0.00175	0.105				
FLUORIDE, TOTAL	mg/L	0.52	<0.50	<0.50	<0.50	<0.50	0.55				
LEAD, TOTAL	mg/L	0.00234	0.00540	0.00152	<0.00100	<0.00100	0.00313				
LITHIUM, TOTAL	mg/L	<0.040	0.848	1.01	1.52	<0.040	0.300				
MERCURY, TOTAL	mg/L	Not Required	Not Required	Not Required	Not Required	Not Required	Not Required				
MOLYBDENUM, TOTAL	mg/L	<0.00500	<0.00500	<0.00500	2.00	<0.00500	<0.00500				
RADIUM (226 + 228)	pCi/L	1.2809U	3.125	1.935	1.3246U	1.677	2.3492				
SELENIUM, TOTAL	mg/L	Not Required	Not Required	Not Required	Not Required	Not Required	Not Required				
THALLIUM, TOTAL	mg/L	Not Required	Not Required	Not Required	Not Required	Not Required	Not Required				

NOTES:

- 1. mg/L Milligrams per Liter; pCi/L picocuries per Liter
- 2. < Constituent was analyzed for, but was not detected above the minium reporting limit (MRL) and is considered a non-detect. Value is displayed as less than the MRL.
- 3. Radium data is a combination of radium isotopes 226 and 228. When results are reported below the MDC (Minimum Detectable Concentration), data is displayed with an accompanying U. The MDC varies depending upon the sample amount and elapsed time of the measurement.
- 4. Not Required constituent analysis is not required per 40 CFR 257.96. Annual scan of the Appendix IV constituents is conducted along with semi-annual monitoring for those constituents in Appendix III and those Appendix IV constituents detected during the annual scan event.
- 5. Bolded data indicates an exceedance of the PL for appendix III constituents and a statistically significant level based on 95% confidence interval above the Groundwater Protection Standard (GWPS) for appendix IV constituents.

APPENDIX A

Analytical Data and Field Data Forms

Mailing Address: PO Box 1410 Ocean Springs, MS 39566-1410 6500 Sunplex Drive Ocean Springs, MS 39564 228.875.6420 Phone 228.875.6423 Fax

March 15, 2022

Ken Ruckstuhl Work Order #: 2202244

Environmental Management Services PO Box 15369

Hattiesburg, MS 39404-5369

RE: Cooperative Energy CCR Annual

Purchase Order #:

Enclosed are Micro-Methods Laboratory, Inc. results of analyses performed on samples received 02/09/2022 10:48. If you have any questions concerning this report, please feel free to contact the office.

Sincerely,

Mitch Spicer

Lab Director *Micro-Methods Laboratory, Inc.*

DISCLAIMER

The results only relate to the items or the sample and/or samples received by the laboratory. This report shall not be reproduced except in full, without the approval of the laboratory. All NELAP certified test methods performed meet the requirements of NELAC 2009 Standards. Any variances and/or deviations specific to this analytical report are referenced in the lab report using qualifiers and detailed explanations found in the case narrative.

PO Box 15369

Hattiesburg MS, 39404-5369

Project: Cooperative Energy CCR Annual

Project Number: SOU2-21-001
Project Manager: Ken Ruckstuhl

Reported: 03/15/2022 11:01

ANALYTICAL REPORT FOR SAMPLES

Sample ID	Laboratory ID	Matrix	Date/Time Sampled	Sampled by	Date/Time Received
MW-2	2202244-01	Water	02/08/2022 14:45	Alan Niven	02/09/2022 10:48
MW-3	2202244-02	Water	02/08/2022 12:45	Alan Niven	02/09/2022 10:48
MW-4	2202244-03	Water	02/07/2022 15:15	Alan Niven	02/09/2022 10:48
MW-5	2202244-04	Water	02/07/2022 14:00	Alan Niven	02/09/2022 10:48
MW-6	2202244-05	Water	02/07/2022 12:30	Alan Niven	02/09/2022 10:48
MW-10	2202244-06	Water	02/07/2022 11:15	Alan Niven	02/09/2022 10:48
BD-1	2202244-07	Water	02/07/2022 16:00	Alan Niven	02/09/2022 10:48

COC meets acceptance criteria

Environmental Management Services Project: Cooperative Energy CCR Annual

 PO Box 15369
 Project Number: SOU2-21-001
 Reported:

 Hattiesburg MS, 39404-5369
 Project Manager: Ken Ruckstuhl
 03/15/2022 11:01

Sample Receipt Conditions

Date/Time Received: 2/9/2022 10:48:00AM Shipped by: Fed Ex

Received by: Sarah E. Tomek Submitted by: Alan Niven


Date/Time Logged: 2/9/2022 12:42:00PM Logged by: Sarah E. Tomek

Cooler ID: #1126 Receipt Temperature: 1.9 °C

Yes

Yes Cooler Custody Seals Present Yes Received on Ice but Not Frozen Containers Intact Yes No Ice, Short Trip No COC/Labels Agree Yes **Obvious Contamination** No Labels Complete Rush to meet HT Yes No COC Complete Yes Received within HT Yes Volatile Vial Headspace >6mm Proper Containers for Analysis No Yes Field Sheet/Instructions Included Correct Preservation No Yes Samples Rejected/Documented in Log No Adequate Sample for Analysis Yes Temp Taken From Temp Blank Yes Sample Custody Seals Present No Temp Taken From Sample Container Samples Missing from COC/Cooler No No Temp Taken From Cooler No

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Environmental Management Services Project: Cooperative Energy CCR Annual

 PO Box 15369
 Project Number: SOU2-21-001
 Reported:

 Hattiesburg MS, 39404-5369
 Project Manager: Ken Ruckstuhl
 03/15/2022 11:01

		5 : / / / ///	V
Cooler Custody Seals Present	Yes	Received on Ice but Not Frozen	Yes
Containers Intact	Yes	No Ice, Short Trip	No
COC/Labels Agree	Yes	Obvious Contamination	No
Labels Complete	Yes	Rush to meet HT	No
COC Complete	Yes	Received within HT	Yes
Volatile Vial Headspace >6mm	No	Proper Containers for Analysis	Yes
Field Sheet/Instructions Included	No	Correct Preservation	Yes
Samples Rejected/Documented in Log	No	Adequate Sample for Analysis	Yes
Temp Taken From Temp Blank	Yes	Sample Custody Seals Present	No
Temp Taken From Sample Container	No	Samples Missing from COC/Cooler	No
Temp Taken From Cooler	No		
COC meets acceptance criteria	Yes		

PO Box 15369

Hattiesburg MS, 39404-5369

Project: Cooperative Energy CCR Annual

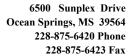
Project Number: SOU2-21-001
Project Manager: Ken Ruckstuhl

Reported: 03/15/2022 11:01

CASE NARRATIVE SUMMARY

All reported results are within Micro-Methods Laboratory, Inc.defined laboratory quality control objectives unless detailed in narrative summary or identified as qualifications. NOTE: All results listed on this report are calculated on a wet weight basis (as received by the laboratory) unless otherwise noted in the analysis qualification sections.

Summary Comments:


See attached results from Sub-Contract Laboratory

Total Metals-EPA 200.8 Rev 5.4

Qualifiers:

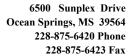
L1 LCS and/or LCSD Recovery Limit exceeded.

Beryllium [He], Cobalt [He] 2B28035-BS1

PO Box 15369

Hattiesburg MS, 39404-5369

Project: Cooperative Energy CCR Annual


Project Number: SOU2-21-001
Project Manager: Ken Ruckstuhl

Reported: 03/15/2022 11:01

MW-2

2202244-01 (Water)

							Date Time	Date Time		
Analyte	Result	MRL	Units	Dil	Batch	Analyst	Prepared	Analyzed	Method	Qualifiers
Classical Chemistry Parame	eters									
Fluoride	0.51	0.50	mg/L	1.0	2B09052	SSK	02/09/2022 13:20	02/09/2022 13:20	SM 4500-F C 2011	
Metals by EPA 200 Series M	ethods ICP-AES									
Barium 455.403 [Radial]	0.029	0.010	mg/L	1.0	2B10068	CLV	02/11/2022 09:00	03/01/2022 16:44	EPA 200.7 Rev 4.4	
Lithium 610.362 [Axial]	ND	0.040	"	"	"	CLV		03/07/2022 14:56	"	
Metals by EPA 200 Series M	ethods ICP-MS [Analysis M	lode]							
Antimony [He]	ND	0.00200	mg/L	1.0	2B28035	CLB		03/02/2022 21:14	EPA 200.8 Rev 5.4	
Arsenic [NG]	ND	0.00200	"	"	"	CLB			"	
Beryllium [He]	0.00470	0.00400	"	"	"	CLB			"	
Cadmium [He]	ND	0.00500	"	"	"	CLB			"	
Chromium [He]	ND	0.0100	"	"	"	CLB		"	"	
Cobalt [He]	0.0956	0.00100	"	"	"	CLB			"	
Lead [He]	0.00241	0.00100	"	"	"	CLB			"	
Molybdenum [He]	ND	0.00500	"	"	"	CLB			"	
Selenium [NG]	ND	0.0500	"	"	"	CLB		"	"	
Thallium [He]	ND	0.00200	"	"	"	CLB		03/04/2022 13:29	"	
Mercury by EPA 200 Series	Methods CVAAS	3								
Mercury	ND	0.002	mg/L	1.0	2B25019	TKM	02/25/2022 09:00	02/28/2022 15:09	EPA 245.1 Rev 3.0	

PO Box 15369 Hattiesburg MS, 39404-5369 Project: Cooperative Energy CCR Annual

Project Number: SOU2-21-001
Project Manager: Ken Ruckstuhl

Reported: 03/15/2022 11:01

MW-3

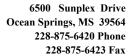
2202244-02 (Water)

				 02 (110	,					
							Date Time	Date Time		
Analyte	Result	MRL	Units	Dil	Batch	Analyst	Prepared	Analyzed	Method	Qualifiers
Classical Chemistry Parame	ters									
Fluoride	ND	0.50	mg/L	1.0	2B09052	SSK	02/09/2022 13:22	02/09/2022 13:22	SM 4500-F C 2011	
Metals by EPA 200 Series Me	ethods ICP-AES									
Barium 455.403 [Radial]	0.038	0.010	mg/L	1.0	2B10068	CLV	02/11/2022 09:00	03/01/2022 16:55	EPA 200.7 Rev 4.4	
Lithium 610.362 [Axial]	0.198	0.040	"	"	"	CLV		03/07/2022 15:07	"	
Metals by EPA 200 Series Me	ethods ICP-MS [Analysis N	lode]							
Antimony [He]	ND	0.00200	mg/L	1.0	2B28035	CLB		03/02/2022 22:26	EPA 200.8 Rev 5.4	
Arsenic [NG]	ND	0.00200	"	"	"	CLB		•	"	
Beryllium [He]	ND	0.00400	"	"	"	CLB			"	
Cadmium [He]	ND	0.00500	"	u u	"	CLB				
Chromium [He]	ND	0.0100	u	"	"	CLB			"	
Cobalt [He]	0.0249	0.00100	"	"	"	CLB		03/02/2022 21:50	"	
Lead [He]	0.00604	0.00100	"	"	"	CLB	"	03/09/2022 14:21	W .	
Molybdenum [He]	ND	0.00500	"	"	"	CLB		03/02/2022 22:26	"	
Selenium [NG]	ND	0.0500	"	"	"	CLB			"	
Thallium [He]	ND	0.00200	· ·	"	"	CLB		03/04/2022 13:42	"	
Mercury by EPA 200 Series I	Methods CVAAS									
Mercury	ND	0.002	mg/L	1.0	2B25019	TKM	02/25/2022 09:00	02/28/2022 15:09	EPA 245.1 Rev 3.0	

PO Box 15369

Hattiesburg MS, 39404-5369

Project: Cooperative Energy CCR Annual


Project Number: SOU2-21-001
Project Manager: Ken Ruckstuhl

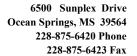
Reported: 03/15/2022 11:01

MW-4

2202244-03 (Water)

							Date Time	Date Time		
Analyte	Result	MRL	Units	Dil	Batch	Analyst	Prepared	Analyzed	Method	Qualifiers
Classical Chemistry Parameter	s									
Fluoride	ND	0.50	mg/L	1.0	2B09052	SSK	02/09/2022 13:24	02/09/2022 13:24	SM 4500-F C 2011	
Metals by EPA 200 Series Meth	ods ICP-AES									
Barium 455.403 [Radial]	0.039	0.010	mg/L	1.0	2B10068	CLV	02/11/2022 09:00	03/01/2022 16:59	EPA 200.7 Rev 4.4	
Lithium 610.362 [Axial]	ND	0.040	"	"	"	CLV		03/07/2022 15:10	n .	
Metals by EPA 200 Series Meth	ods ICP-MS	Analysis N	lode]							
Antimony [He]	ND	0.00200	mg/L	1.0	2B28035	CLB		03/02/2022 21:56	EPA 200.8 Rev 5.4	
Arsenic [NG]	ND	0.00200	"	"	"	CLB		"		
Beryllium [He]	ND	0.00400	"	"	"	CLB			"	
Cadmium [He]	ND	0.00500	"	"	"	CLB			"	
Chromium [He]	ND	0.0100	"	"	n n	CLB			"	
Cobalt [He]	0.0263	0.00100	"	"	"	CLB			"	
∟ead [He]	ND	0.00100	"	"	"	CLB			"	
Molybdenum [He]	ND	0.00500	"	"	"	CLB			"	
Selenium [NG]	ND	0.0500	"	"	"	CLB			ıı	
Thallium [He]	ND	0.00200	"	"	"	CLB		03/04/2022 13:47	п	
Mercury by EPA 200 Series Met	hods CVAAS	3								
Mercury	ND	0.002	mg/L	1.0	2B25019	TKM	02/25/2022 09:00	02/28/2022 15:09	EPA 245.1 Rev 3.0	

PO Box 15369 Hattiesburg MS, 39404-5369 Project: Cooperative Energy CCR Annual


Project Number: SOU2-21-001
Project Manager: Ken Ruckstuhl

Reported: 03/15/2022 11:01

MW-5

2202244-04 (Water)

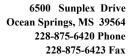
Analyte	Result	MRL	Units	Dil	Batch	Analyst	Date Time Prepared	Date Time Analyzed	Method	Qualifiers
Classical Chemistry Param	eters									
Fluoride	ND	0.50	mg/L	1.0	2B09052	SSK	02/09/2022 13:26	02/09/2022 13:26	SM 4500-F C 2011	
Metals by EPA 200 Series N	lethods ICP-AES									
Barium 455.403 [Radial]	0.061	0.010	mg/L	1.0	2B10068	CLV	02/11/2022 09:00	03/01/2022 17:02	EPA 200.7 Rev 4.4	
Lithium 610.362 [Axial]	2.14	0.040	"	"	"	CLV	*	03/07/2022 15:14	"	
Metals by EPA 200 Series N	lethods ICP-MS	Analysis M	lode]							
Antimony [He]	ND	0.00200	mg/L	1.0	2B28035	CLB	"	03/02/2022 22:02	EPA 200.8 Rev 5.4	
Arsenic [NG]	ND	0.00200	"	"	II .	CLB			"	
Beryllium [He]	ND	0.00400	"	"	"	CLB			"	
Cadmium [He]	ND	0.00500	"	"	"	CLB				
Chromium [He]	ND	0.0100	"	"	II .	CLB				
Cobalt [He]	0.0152	0.00100	"	"	II .	CLB			"	
Lead [He]	ND	0.00100	"	"	"	CLB		03/09/2022 14:26	"	
Molybdenum [He]	2.59	0.00500	"	5.0	"	CLB			"	
Selenium [NG]	ND	0.0500	"	1.0	"	CLB		03/02/2022 22:02	"	
Thallium [He]	ND	0.00200	"	"	"	CLB	"	03/04/2022 13:51	"	
Mercury by EPA 200 Series	Methods CVAAS	3								
Mercury	ND	0.002	mg/L	1.0	2B25019	TKM	02/25/2022 09:00	02/28/2022 15:09	EPA 245.1 Rev 3.0	

PO Box 15369

Hattiesburg MS, 39404-5369

Project: Cooperative Energy CCR Annual

Project Number: SOU2-21-001
Project Manager: Ken Ruckstuhl


Reported:

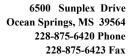
03/15/2022 11:01

MW-6

2202244-05 (Water)

				•	,					
							Date Time	Date Time		
Analyte	Result	MRL	Units	Dil	Batch	Analyst	Prepared	Analyzed	Method	Qualifiers
Classical Chemistry Paramete	ers									
Fluoride	ND	0.50	mg/L	1.0	2B09052	SSK	02/09/2022 13:28	02/09/2022 13:28	SM 4500-F C 2011	
Metals by EPA 200 Series Met	hods ICP-AES									
Barium 455.403 [Radial]	0.155	0.010	mg/L	1.0	2B10068	CLV	02/11/2022 09:00	03/01/2022 17:06	EPA 200.7 Rev 4.4	
Lithium 610.362 [Axial]	ND	0.040	"	"	"	CLV		03/07/2022 15:18	"	
Metals by EPA 200 Series Met	hods ICP-MS [Analysis M	lode]							
Antimony [He]	ND	0.00200	mg/L	1.0	2B28035	CLB		03/02/2022 22:08	EPA 200.8 Rev 5.4	
Arsenic [NG]	ND	0.00200	"	"	"	CLB	•		"	
Beryllium [He]	ND	0.00400	"	"	"	CLB			"	
Cadmium [He]	ND	0.00500	"	"	"	CLB			"	
Chromium [He]	ND	0.0100	u	"	"	CLB				
Cobalt [He]	0.00156	0.00100	u	"	"	CLB			"	
Lead [He]	ND	0.00100	"	"	"	CLB			"	
Molybdenum [He]	ND	0.00500	"	"	"	CLB				
Selenium [NG]	ND	0.0500	"	"	"	CLB			п	
Thallium [He]	ND	0.00200	"	"	"	CLB		03/04/2022 13:55	n .	
Mercury by EPA 200 Series Me	ethods CVAAS									
Mercury	ND	0.002	mg/L	1.0	2B25019	TKM	02/25/2022 09:00	02/28/2022 15:09	EPA 245.1 Rev 3.0	

PO Box 15369 Hattiesburg MS, 39404-5369 Project: Cooperative Energy CCR Annual


Project Number: SOU2-21-001
Project Manager: Ken Ruckstuhl

Reported: 03/15/2022 11:01

MW-10

2202244-06 (Water)

				(,		Date	Date		
							Time	Time		
Analyte	Result	MRL	Units	Dil	Batch	Analyst	Prepared	Analyzed	Method	Qualifier
Classical Chemistry Parameter	s									
Fluoride	ND	0.50	mg/L	1.0	2B09052	SSK	02/09/2022 13:49	02/09/2022 13:49	SM 4500-F C 2011	
Metals by EPA 200 Series Meth	ods ICP-AES						10.40	10.10	2011	
Barium 455.403 [Radial]	0.035	0.010	mg/L	1.0	2B10068	CLV	02/11/2022 09:00	03/01/2022 17:10	EPA 200.7 Rev 4.4	
Lithium 610.362 [Axial]	0.352	0.040	"	"	"	CLV	"	03/07/2022 15:21	"	
Metals by EPA 200 Series Meth	ods ICP-MS [Analysis N	lode]					15.21		
Antimony [He]	ND	0.00200	mg/L	1.0	2B28035	CLB	"	03/02/2022 22:13	EPA 200.8 Rev 5.4	
Arsenic [NG]	ND	0.00200	"	"	"	CLB			"	
Beryllium [He]	0.00932	0.00400	"	"	"	CLB			"	
Cadmium [He]	ND	0.00500	"	"	"	CLB			"	
Chromium [He]	ND	0.0100	"	"	"	CLB	"		"	
Cobalt [He]	0.0893	0.00100	"	"	"	CLB			"	
Lead [He]	0.00256	0.00100	"	"	"	CLB			"	
Molybdenum [He]	ND	0.00500	"	"	"	CLB			"	
Selenium [NG]	ND	0.0500	"	"	"	CLB			п	
Thallium [He]	ND	0.00200	"	"	"	CLB		03/04/2022 14:26	n	
Mercury by EPA 200 Series Me	thods CVAAS	;						14.20		
Mercury	ND	0.002	mg/L	1.0	2B25019	TKM	02/25/2022 09:00	02/28/2022 15:09	EPA 245.1 Rev 3.0	

PO Box 15369 Hattiesburg MS, 39404-5369 Project: Cooperative Energy CCR Annual

Project Number: SOU2-21-001
Project Manager: Ken Ruckstuhl

Reported: 03/15/2022 11:01

BD-1

2202244-07 (Water)

				•	,					
	Devel	MDI	11.24.	Dil	Datab	A I 4	Date Time Prepared	Date Time Analyzed		0 1:5
Analyte	Result	MRL	Units	Dil	Batch	Analyst	Prepared	Ariaiyzeu	Method	Qualifiers
Classical Chemistry Parame	eters									
Fluoride	ND	0.50	mg/L	1.0	2B09052	SSK	02/09/2022 13:52	02/09/2022 13:52	SM 4500-F C 2011	
Metals by EPA 200 Series N	lethods ICP-AES									
Barium 455.403 [Radial]	0.038	0.010	mg/L	1.0	2B10068	CLV	02/11/2022 09:00	03/01/2022 17:13	EPA 200.7 Rev 4.4	
Lithium 610.362 [Axial]	0.197	0.040	"	"	"	CLV		03/07/2022 15:25	"	
Metals by EPA 200 Series M	lethods ICP-MS [Analysis N	lode]							
Antimony [He]	ND	0.00200	mg/L	1.0	2B28035	CLB	"	03/02/2022 22:20	EPA 200.8 Rev 5.4	
Arsenic [NG]	ND	0.00200	"	"	"	CLB		"	"	
Beryllium [He]	ND	0.00400	"	"	"	CLB			•	
Cadmium [He]	ND	0.00500	"	"	"	CLB			"	
Chromium [He]	ND	0.0100	"	"	"	CLB			"	
Cobalt [He]	0.0253	0.00100	"	"	"	CLB			m m	
Lead [He]	0.00517	0.00100	"	"	"	CLB			"	
Molybdenum [He]	ND	0.00500	"	"	"	CLB		03/09/2022 14:30	"	
Selenium [NG]	ND	0.0500	"	"	"	CLB		03/02/2022 22:20	"	
Thallium [He]	ND	0.00200	"	"	"	CLB		03/04/2022 14:31	"	
Mercury by EPA 200 Series	Methods CVAAS	1								
Mercury	ND	0.002	mg/L	1.0	2B25019	TKM	02/25/2022 09:00	02/28/2022 15:09	EPA 245.1 Rev 3.0	

PO Box 15369

Hattiesburg MS, 39404-5369

Project: Cooperative Energy CCR Annual

Project Number: SOU2-21-001
Project Manager: Ken Ruckstuhl

Reported: 03/15/2022 11:01

Classical Chemistry Parameters - Quality Control

Analyte	Analyzed	Result	MRL	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Qualifiers
Batch 2B09052 - Default Prep GenChen											
Blank (2B09052-BLK1)											
Fluoride	2/9/22 13:00	ND	0.50	mg/L							
LCS (2B09052-BS1)											
Fluoride	2/9/22 13:08	1.81	0.50	mg/L	2.00		90.5	83.3-107			
LCS Dup (2B09052-BSD1)											
Fluoride	2/9/22 13:10	1.85	0.50	mg/L	2.00		92.5	83.3-107	2.19	30	
Duplicate (2B09052-DUP1)			Source: 22021	96-03							
Fluoride	2/9/22 13:19	0.27	0.50	mg/L		0.25			10.4	20	
Matrix Spike (2B09052-MS1)			Source: 22021	96-03							
Fluoride	2/9/22 13:16	4.13	0.50	mg/L	4.00	0.25	97.1	79.3-113			
Matrix Spike Dup (2B09052-MSD1)			Source: 22021	96-03							
Fluoride	2/9/22 13:18	4.37	0.50	mg/L	4.00	0.25	103	79.3-113	5.65	30	

PO Box 15369 Pr

Hattiesburg MS, 39404-5369

Project: Cooperative Energy CCR Annual

Project Number: SOU2-21-001
Project Manager: Ken Ruckstuhl

Reported: 03/15/2022 11:01

Metals by EPA 200 Series Methods ICP-AES - Quality Control

Analyte	Analyzed	Result	MRL	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Qualifiers
Batch 2B10068 - EPA 200.2 DCN 1017	Rev 10										
Blank (2B10068-BLK1)											
Barium 455.403 [Radial]	3/1/22 16:33	ND	0.010	mg/L							
Lithium 610.362 [Axial]	3/7/22 14:45	ND	0.040								
LCS (2B10068-BS1)											
Barium 455.403 [Radial]	3/1/22 16:37	0.220	0.010	mg/L	0.200		110	85-115			
Lithium 610.362 [Axial]	3/7/22 14:49	0.227	0.040		0.200		113	85-115			
LCS Dup (2B10068-BSD1)											
Barium 455.403 [Radial]	3/1/22 16:40	0.226	0.010	mg/L	0.200		113	85-115	2.68	20	
Lithium 610.362 [Axial]	3/7/22 14:52	0.226	0.040		0.200		113	85-115	0.323	20	
Matrix Spike (2B10068-MS1)			Source: 22022	44-01							
Barium 455.403 [Radial]	3/1/22 16:48	0.257	0.010	mg/L	0.200	0.029	114	70-130			
Lithium 610.362 [Axial]	3/7/22 14:59	0.199	0.040		0.200	ND	99.6	70-130			
Matrix Spike Dup (2B10068-MSD1)			Source: 22022	44-01							
Barium 455.403 [Radial]	3/1/22 16:51	0.259	0.010	mg/L	0.200	0.029	115	70-130	0.721	20	
Lithium 610.362 [Axial]	3/7/22 15:03	0.195	0.040		0.200	ND	97.7	70-130	1.93	20	

PO Box 15369

Hattiesburg MS, 39404-5369

Project: Cooperative Energy CCR Annual

Project Number: SOU2-21-001 Reported:
Project Manager: Ken Ruckstuhl 03/15/2022 11:01

Metals by EPA 200 Series Methods ICP-MS [Analysis Mode] - Quality Control

Analyte	Analyzed	Result	MRL	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Qualifiers
Batch 2B28035 - EPA 200.2 DC	N 1017 Rev 10										
Blank (2B28035-BLK1)											
Antimony [He]	3/2/22 20:57	ND	0.00200	mg/L							
Arsenic [NG]	3/2/22 20:57	ND	0.00200								
Barium [He]	3/2/22 20:57	ND	0.00100								
Beryllium [He]	3/2/22 20:57	ND	0.00400								
Cadmium [He]	3/2/22 20:57	ND	0.00500								
Chromium [He]	3/2/22 20:57	ND	0.0100								
Cobalt [He]	3/2/22 20:57	ND	0.00100								
Lead [He]	3/2/22 20:57	ND	0.00100								
Molybdenum [He]	3/2/22 20:57	ND	0.00500								
Selenium [NG]	3/2/22 20:57	ND	0.0500								
Thallium [He]	3/4/22 13:16	ND	0.00200								
LCS (2B28035-BS1)											
Antimony [He]	3/2/22 21:03	0.228	0.00400	mg/L	0.200		114	85-115			
Arsenic [NG]	3/2/22 21:03	0.222	0.00400		0.200		111	85-115			
Barium [He]	3/2/22 21:03	0.224	0.00200		0.200		112	85-115			
Beryllium [He]	3/2/22 21:03	0.235	0.00200		0.200		117	85-115			L1
Cadmium [He]	3/2/22 21:03	0.226	0.00200		0.200		113	85-115			
Chromium [He]	3/2/22 21:03	0.216	0.00200		0.200		108	85-115			
Cobalt [He]	3/2/22 21:03	0.236	0.00200		0.200		118	85-115			L1
Lead [He]	3/2/22 21:03	0.216	0.00200		0.200		108	85-115			
Molybdenum [He]	3/2/22 21:03	0.198	0.00200		0.200		98.8	85-115			
Selenium [NG]	3/2/22 21:03	0.220	0.0100		0.200		110	85-115			
Thallium [He]	3/4/22 13:20	0.224	0.00400		0.200		112	85-115			
LCS Dup (2B28035-BSD1)											
Antimony [He]	3/2/22 21:09	0.217	0.00400	mg/L	0.200		108	85-115	5.25	20	
Arsenic [NG]	3/2/22 21:09	0.209	0.00400		0.200		104	85-115	6.19	20	
Barium [He]	3/2/22 21:09	0.215	0.00200		0.200		107	85-115	4.47	20	
Beryllium [He]	3/2/22 21:09	0.226	0.00200		0.200		113	85-115	3.91	20	
Cadmium [He]	3/2/22 21:09	0.215	0.00200		0.200		108	85-115	5.01	20	
Chromium [He]	3/2/22 21:09	0.205	0.00200		0.200		102	85-115	5.36	20	
Cobalt [He]	3/2/22 21:09	0.225	0.00200		0.200		112	85-115	4.79	20	
Lead [He]	3/2/22 21:09	0.199	0.00200		0.200		99.7	85-115	8.10	20	
Molybdenum [He]	3/2/22 21:09	0.189	0.00200		0.200		94.4	85-115	4.57	20	
Selenium [NG]	3/2/22 21:09	0.210	0.0100		0.200		105	85-115	5.06	20	
Thallium [He]	3/4/22 13:25	0.216	0.00400		0.200		108	85-115	3.68	20	

Hattiesburg MS, 39404-5369

Project: Cooperative Energy CCR Annual

PO Box 15369

Project Number: SOU2-21-001
Project Manager: Ken Ruckstuhl

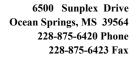
Reported: 03/15/2022 11:01

Metals by EPA 200 Series Methods ICP-MS [Analysis Mode] - Quality Control

Matrix Spike (2B28035-MS1) Source: 2202244-01	112				
Antimony [He] 3/2/2 21:20 0.224 0.00400 mg/L 0.200 ND Arsenic [NG] 3/2/22 21:20 0.217 0.00400 " 0.200 ND Barium [He] 3/2/2 21:20 0.252 0.00200 " 0.200 0.028 Beryllium [He] 3/2/2 21:20 0.223 0.00200 " 0.200 0.005 Cadmium [He] 3/2/2 21:20 0.215 0.00200 " 0.200 0.005 Chromium [He] 3/2/2 21:20 0.205 0.00200 " 0.200 0.002 Chromium [He] 3/2/2 21:20 0.205 0.00200 " 0.200 0.002 Cobalt [He] 3/2/2 21:20 0.316 0.00200 " 0.200 0.006 Lead [He] 3/2/2 21:20 0.215 0.00200 " 0.200 0.006 Molybdenum [He] 3/2/2 21:20 0.215 0.00200 " 0.200 0.002 Molybdenum [He] 3/2/2 21:20 0.215 0.00200 " 0.200 0.002 Selenium [NG] 3/2/2 21:20 0.237 0.00400 " 0.200 0.025 Thallium [He] 3/4/22 14:21 0.227 0.00400 " 0.200 ND	112				
Arsenic [NG] 3/2/22 21:20 0.217 0.00400 " 0.200 ND Barium [He] 3/2/22 21:20 0.252 0.00200 " 0.200 0.008 Beryllium [He] 3/2/22 21:20 0.223 0.00200 " 0.200 0.005 Cadmium [He] 3/2/22 21:20 0.215 0.00200 " 0.200 0.0003 Chromium [He] 3/2/22 21:20 0.205 0.00200 " 0.200 0.002 Chromium [He] 3/2/22 21:20 0.316 0.00200 " 0.200 0.002 Cobalt [He] 3/2/22 21:20 0.316 0.00200 " 0.200 0.002 Lead [He] 3/2/22 21:20 0.215 0.00200 " 0.200 0.002 Molybdenum [He] 3/2/22 21:20 0.215 0.00200 " 0.200 0.002 Molybdenum [He] 3/2/22 21:20 0.207 0.00200 " 0.200 0.0004 Selenium [NG] 3/2/22 21:20 0.237 0.0100 " 0.200 0.025 Thallium [He] 3/4/22 14:21 0.227 0.00400 " 0.200 ND	112				
Barium [He] 3/2/22 21:20 0.252 0.00200 " 0.200 0.028 Beryllium [He] 3/2/22 21:20 0.223 0.00200 " 0.200 0.005 Cadmium [He] 3/2/22 21:20 0.215 0.00200 " 0.200 0.0003 Chromium [He] 3/2/22 21:20 0.205 0.00200 " 0.200 0.002 Cobalt [He] 3/2/22 21:20 0.316 0.00200 " 0.200 0.096 Lead [He] 3/2/22 21:20 0.215 0.00200 " 0.200 0.002 Molybdenum [He] 3/2/22 21:20 0.207 0.00200 " 0.200 0.0024 Selenium [NG] 3/2/22 21:20 0.237 0.0100 " 0.200 0.025 Thallium [He] 3/4/22 14:21 0.227 0.00400 " 0.200 ND		70-130			
Beryllium [He] 3/2/22 21:20 0.223 0.00200 " 0.200 0.005 Cadmium [He] 3/2/22 21:20 0.215 0.00200 " 0.200 0.0003 Chromium [He] 3/2/22 21:20 0.205 0.00200 " 0.200 0.002 Cobalt [He] 3/2/22 21:20 0.316 0.00200 " 0.200 0.096 Lead [He] 3/2/22 21:20 0.215 0.00200 " 0.200 0.002 Molybdenum [He] 3/2/22 21:20 0.207 0.00200 " 0.200 0.004 Selenium [NG] 3/2/22 21:20 0.237 0.0100 " 0.200 0.025 Thallium [He] 3/4/22 14:21 0.227 0.00400 " 0.200 ND	108	70-130			
Cadmium [He] 3/2/22 21:20 0.215 0.00200 " 0.200 0.0003 Chromium [He] 3/2/22 21:20 0.205 0.00200 " 0.200 0.002 Cobalt [He] 3/2/22 21:20 0.316 0.00200 " 0.200 0.096 Lead [He] 3/2/22 21:20 0.215 0.00200 " 0.200 0.002 Molybdenum [He] 3/2/22 21:20 0.207 0.00200 " 0.200 0.004 Selenium [NG] 3/2/22 21:20 0.237 0.0100 " 0.200 0.025 Thallium [He] 3/4/22 14:21 0.227 0.00400 " 0.200 ND	3 112	70-130			
Chromium [He] 3/2/22 21:20 0.205 0.00200 " 0.200 0.002 Cobalt [He] 3/2/22 21:20 0.316 0.00200 " 0.200 0.096 Lead [He] 3/2/22 21:20 0.215 0.00200 " 0.200 0.002 Molybdenum [He] 3/2/22 21:20 0.207 0.00200 " 0.200 0.0004 Selenium [NG] 3/2/22 21:20 0.237 0.0100 " 0.200 0.025 Thallium [He] 3/4/22 14:21 0.227 0.00400 " 0.200 ND	5 109	70-130			
Cobalt [He] 3/2/22 21:20 0.316 0.00200 " 0.200 0.096 Lead [He] 3/2/22 21:20 0.215 0.00200 " 0.200 0.002 Molybdenum [He] 3/2/22 21:20 0.207 0.00200 " 0.200 0.004 Selenium [NG] 3/2/22 21:20 0.237 0.0100 " 0.200 0.025 Thallium [He] 3/4/22 14:21 0.227 0.00400 " 0.200 ND	3 107	70-130			
Lead [He] 3/2/22 21:20 0.215 0.00200 " 0.200 0.002 Molybdenum [He] 3/2/22 21:20 0.207 0.00200 " 0.200 0.0004 Selenium [NG] 3/2/22 21:20 0.237 0.0100 " 0.200 0.025 Thallium [He] 3/4/22 14:21 0.227 0.00400 " 0.200 ND	2 101	70-130			
Molybdenum [He] 3/2/22 21:20 0.207 0.00200 " 0.200 0.0004 Selenium [NG] 3/2/22 21:20 0.237 0.0100 " 0.200 0.025 Thallium [He] 3/4/22 14:21 0.227 0.00400 " 0.200 ND	3 110	70-130			
Selenium [NG] 3/2/22 21:20 0.237 0.0100 " 0.200 0.025 Thallium [He] 3/4/22 14:21 0.227 0.00400 " 0.200 ND	2 106	70-130			
Thallium [He] 3/4/22 14:21 0.227 0.00400 " 0.200 ND	4 103	70-130			
• •	5 106	70-130			
Music Calle Day (DDSSS MDD)	114	70-130			
Matrix Spike Dup (2B28035-MSD1) Source: 2202244-01					
Antimony [He] 3/2/22 21:26 0.218 0.00400 mg/L 0.200 ND	109	70-130	3.00	20	
Arsenic [NG] 3/2/22 21:26 0.215 0.00400 " 0.200 ND	108	70-130	0.838	20	
Barium [He] 3/2/22 21:26 0.244 0.00200 " 0.200 0.028	3 108	70-130	3.46	20	
Beryllium [He] 3/2/22 21:26 0.217 0.00200 " 0.200 0.005	5 106	70-130	2.53	20	
Cadmium [He] 3/2/22 21:26 0.208 0.00200 " 0.200 0.0003	3 104	70-130	3.09	20	
Chromium [He] 3/2/22 21:26 0.197 0.00200 " 0.200 0.002	97.6	70-130	3.72	20	
Cobalt [He] 3/2/22 21:26 0.305 0.00200 " 0.200 0.096	105	70-130	3.47	20	
Lead [He] 3/2/22 21:26 0.198 0.00200 " 0.200 0.002	97.8	70-130	8.22	20	
Molybdenum [He] 3/2/22 21:26 0.203 0.00200 " 0.200 0.0004	4 101	70-130	1.88	20	
Selenium [NG] 3/2/22 21:26 0.234 0.0100 " 0.200 0.025	5 105	70-130	1.11	20	
Thallium [He] 3/4/22 14:17 0.221 0.00400 " 0.200 ND	111	70-130	2.61	20	

PO Box 15369 Project Number: SOU2-21-001

Hattiesburg MS, 39404-5369


Project: Cooperative Energy CCR Annual

Project Number: SOU2-21-001 Reported:

Project Manager: Ken Ruckstuhl 03/15/2022 11:01

Mercury by EPA 200 Series Methods CVAAS - Quality Control

Analyte	Analyzed	Result	MRL	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Qualifiers
Batch 2B25019 - EPA 245.1 DCN 1017	' Rev 10										
Blank (2B25019-BLK1)											
Mercury	2/28/22 15:09	ND	0.002	mg/L							
LCS (2B25019-BS1)											
Mercury	2/28/22 15:09	0.005	0.002	mg/L	0.00500		102	85-115			
LCS Dup (2B25019-BSD1)											
Mercury	2/28/22 15:09	0.005	0.002	mg/L	0.00500		100	85-115	1.98	20	
Matrix Spike (2B25019-MS1)			Source: 22022	44-01							
Mercury	2/28/22 15:09	0.005	0.002	mg/L	0.00500	0.0005	88.0	70-130			
Matrix Spike Dup (2B25019-MSD1)			Source: 22022	44-01							
Mercury	2/28/22 15:09	0.006	0.002	mg/L	0.00500	0.0005	104	70-130	15.1	20	

Project: Cooperative Energy CCR Annual

PO Box 15369 Hattiesburg MS, 39404-5369 Project Number: SOU2-21-001
Project Manager: Ken Ruckstuhl

Reported: 03/15/2022 11:01

Certified Analyses Included in this Report

Analyte	Certification Code
EPA 200.7 Rev 4.4 in Water	
Aluminum 237.312 [Radial]	C01,C02
Aluminum 394.401 [Radial]	C01,C02
Aluminum 396.152 [Radial]	C01,C02
Antimony 206.833 [Axial]	C01,C02
Arsenic 193.759 [Axial]	C01,C02
Barium 455.403 [Radial]	C01,C02
Barium 493.409 [Radial]	C01,C02
Beryllium 313.042 [Axial]	C01,C02
Boron 249.773 [Radial]	C01,C02
Cadmium 228.802 [Axial]	C01,C02
Calcium 315.887 [Radial]	C01,C02
Chromium 283.563 [Axial]	C01,C02
Cobalt 228.616 [Axial]	C01,C02
Copper 324.754 [Axial]	C01,C02
Iron 259.940 [Axial]	C01,C02
Iron 259.940 [Radial]	C01,C02
Lead 220.353 [Axial]	C01,C02
Lithium 610.362 [Axial]	C01,C02
Magnesium 285.213 [Radial]	C01,C02
Manganese 257.610 [Axial]	C01,C02
Molybdenum 202.030 [Axial]	C01,C02
Nickel 231.604 [Axial]	C01,C02
Potassium 766.490 [Radial]	C01,C02
Phosphorus 178.284 [Axial]	C01,C02
Phosphorus 178.284 [Radial]	C01,C02
Selenium 196.090 [Axial]	C01,C02
Silver 328.068 [Axial]	C01,C02
Sodium 589.592 [Axial]	C01,C02
Sodium 589.592 [Radial]	C01,C02
Strontium 346.446 [Radial]	C01,C02
Strontium 421.552 [Radial]	C01,C02
Thallium 190.856 [Axial]	C01,C02
Tin 189.989 [Axial]	C01,C02
Titanium 334.941 [Axial]	C01,C02
Vanadium 309.311 [Axial]	C01,C02
Zinc 213.856 [Axial]	C01,C02
EPA 200.8 Rev 5.4 in Water	
Aluminum [He]	C01,C02
Antimony [He]	C01,C02
Antimony [HHe]	C01,C02
Antimony [NG]	C01,C02

Environmental Management Services Project: Cooperative Energy CCR Annual PO Box 15369 Project Number: SOU2-21-001

 PO Box 15369
 Project Number: SOU2-21-001
 Reported:

 Hattiesburg MS, 39404-5369
 Project Manager: Ken Ruckstuhl
 03/15/2022 11:01

Arsenic [He]	C01
Arsenic [HHe]	C01,C02
Arsenic [NG]	C01,C02
Barium [He]	C01,C02
Beryllium [He]	C01,C02
Boron [NG]	C01,C02
Cadmium [He]	C01
Cadmium [HHe]	C01,C02
Cadmium [NG]	C01,C02
Chromium [He]	C01,C02
Cobalt [He]	C01,C02
Copper [He]	C01,C02
Copper [NG]	C01,C02
Iron [He]	C01,C02
Lead [He]	C01,C02
Lead [NG]	C01,C02
Manganese [He]	C01,C02
Molybdenum [He]	C01,C02
Nickel [He]	C01,C02
Selenium [He]	C01
Selenium [HHe]	C01,C02
Selenium [NG]	C01,C02
Silver [He]	C01,C02
Silver [NG]	C01,C02
Strontium [He]	C01,C02
Thallium [He]	C01,C02
Vanadium [He]	C01,C02
Zinc [He]	C01,C02
EBA 245 1 Boy 2 0 in Water	

EPA 245.1 Rev 3.0 in Water

Mercury C01,C02

^{**}Only compounds included in this list are associated with accredited analyses**

PO Box 15369 Hattiesburg MS, 39404-5369 Project: Cooperative Energy CCR Annual

Project Number: SOU2-21-001
Project Manager: Ken Ruckstuhl

Reported: 03/15/2022 11:01

Laboratory Accreditations/Certifications

Code	Description	Number	Expires
C01	LA Environmental Lab Accreditation Program	01960	06/30/2022
C02	The NELAC Institute (NELAP)	TNI01397	06/30/2022
C03	Ms Dept of Health (Drinking Water Microbiology)	MS00021	12/31/2022
C04	Ms Dept of Health (Drinking Water Chemistry)	MS00021	12/31/2022
C05	Ms DEQ Lead Firm Certification	PBF-00000028	03/24/2022
C06	MsDEQ Asbestos Inspector : C.D. Bingham	ABI-00001348	02/12/2022
C07	MsDEQ Air Monitor : C.D. Bingham	AM-011572	02/13/2022
C08	MsDEQ Asbestos Inspector: C. W. Meins	ABI-00001821	09/09/2022
C09	MsDEQ Air Monitor: C.W. Meins	AM-011189	02/13/2022
C14	MsDEQ Lead Paint Inspector : C.D. Bingham	PBI-00003690	03/24/2022
C15	MsDEQ Lead Paint Inspector : C.W. Meins	PBI-00001740	03/24/2022

Report Definitions

ND Analyte NOT DETECTED at or above the minimum reporting limit NR Not Reported Detection Proceed Services and Detection Proceedings of the Proc
RPD Relative Percent Difference ICV Initial Calibration Verfiication
CCV Continuing Calibration Verification Standard
SSV Secondary Source Verfication Standard
LCS Lab Control Spike - Lab matrix prepared with known concentration of analyte/s of interest analyzed by method.
MS Matrix Spike - Sample prepared with known concentration of analyte/s of interest analyzed by method.
MSD Matrix Spike Duplicate - Duplicate sample prepared with known concentration of analyte/s of interest analyzed by method.
MRL Minimum Reporting Limit
%REC Percentage Recovery of known concentration added to matrix
Batch Group of samples prepared for analysis not to exceed 20 samples.
Matrix Material containing analyte/s of interest
Surrogate Analyte added to sample to determine extraction efficiency of method.

Environmental Management Services Project: Cooperative Energy CCR Annual

 PO Box 15369
 Project Number: SOU2-21-001
 Reported:

 Hattiesburg MS, 39404-5369
 Project Manager: Ken Ruckstuhl
 03/15/2022 11:01

Analyst Initials Key

<u>FullName</u>	<u>Initials</u>
Camie Bourne	CLB
Charles L Vorhoff	CLV
Sarah E. Tomek	SET
Stella S Kleist	SSK
Teresa Meins	TKM
Tina Tomek	TPT

PO Box 1410, Ocean Springs, MS 39566-1410 (228) 875-6420 FAX (228) 875-6423

www.micromethodslab.com

Chain of Custody Record

Lab ID# MS00021 LELAP ID # 01960 TNI ID # TNI01397

Print Form

00000111

Company Name: EMS	Pr	Project Manager:	anager:		Ken R	uck	Ruckstuhl			Turn A	round	Turn Around Time & Reporting	eporting
S	P	ırchase	Purchase Order #:						×Normal	ur normai i	"All rus	Our normal turn around time is 10 working days *All rush orderPh	vorking days Phone
City: Hattiesburg State: MS Zip: 39402	ū	Email Address :	iress :	ruc	kruckstuhl@env-mgt.)env	-mg	t.com	Next Day*	ay*	request	requests must be	Mail
Phone: 601 544 3674	တ္တ	mpler N	Sampler Name Printed:	inted:	flan Ni	1/en			Other*	3	prior a	prior approved.	Email
Fax: 601 544 0504	Se	mpler N	Sampler Name Signed:	gned:	March	y	./		QC Level: Level 1	Level 1	Lev	Level 2	evel 3
			20	List A	List Analyses Requested	queste	ā			Field Testing	esting		
Project Name: Cooperative Energy CCR LF Annual	_	servat	_			\perp			ID# Field Test	ID# Field Test	Field Te	ID# ID# ID# ID# ID# Field Test Field Test	Matrix:
Project #: SOU2-21-001	ontaine		endix										
Sample Identification Sampling Date/Time	Matrix Code	Grab (SO = Soil
MW-2 2-8-22 1445	W	-	×										L = Liquid
MW-3 88-22 12:45	W L	9	×										A = Air
MW-4 R-7-22 15:15	×	G	×										SL = Sludge
MW-5 2-7-22 14:00	W	9	×										
MW-6 27-22 12:30	W L	6	\times										
MW-10 2772 11:15	×	9	×										Preservation:
BU-1	×	G	×										2= H3PO4
		1											3=NaOH 4=ZnC4H10O6
													S=ZnC4H10O6 & NaOH
Received on Ice V N Thermometer# Co	Cooler#		Recei	ot Tem	Receipt Temp Corrected(°C	<u>-</u>							6=HNO3 7=Na2S2O3
Date & Time By: δ			Sample	e	Blank X C	Cooler_		k:	**All Temps are Corrected Values**	s are Corre	ected Val	ues**	9=NaHSO4
Printed Name		Signature	eri	1	Company	Date		Time	Notes:	#11007	*	20	2.4.8
Relinquished by Alam Nivan	alla	10	31		EMS	2-5	833	00,21		COURT#	# : :: #	26	1.9.0
Received by Received by Received by	5					4			See Work Order:	k Order:			
Relinquished by 1 FCOLEX	-			-					Annual /	∖ppendi	x IV - ar	ıtimony, aı	Annual Appendix IV - antimony, arsenic, barium,
Received by SMMM TOMM	MINK	NIK	BY	W	MM	7 3	22/11	8401	berylliun	n, cadmi	um, ch	romium, co	beryllium, cadmium, chromium, cobalt, fluoride,
Relinquished by		C					8		thallium, radium 226/228	, radium	226/22	nolybaent 8	lead, lithium, mercufy, molybdenum, seienium, thallium, radium 226/228
Received by												i	

Physical Address: 6500 Sunplex Drive, Ocean Springs MS 39564

March 14, 2022

Tina Tomek Micro-Methods Lab 6500 Sunplex Drive Ocean Springs, MS 39564

RE: Project: 2202244

Pace Project No.: 30467306

Dear Tina Tomek:

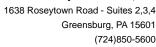
Enclosed are the analytical results for sample(s) received by the laboratory on February 16, 2022. The results relate only to the samples included in this report. Results reported herein conform to the applicable TNI/NELAC Standards and the laboratory's Quality Manual, where applicable, unless otherwise noted in the body of the report.

The test results provided in this final report were generated by each of the following laboratories within the Pace Network:

• Pace Analytical Services - Greensburg

If you have any questions concerning this report, please feel free to contact me.

Sincerely,


David A. Pichette david.pichette@pacelabs.com (724)850-5617 Project Manager

and Politico

Enclosures

cc: Accounts Payable, Micro-Methods Lab

CERTIFICATIONS

Project: 2202244
Pace Project No.: 30467306

Pace Analytical Services Pennsylvania

1638 Roseytown Rd Suites 2,3&4, Greensburg, PA 15601

ANAB DOD-ELAP Rad Accreditation #: L2417

Alabama Certification #: 41590 Arizona Certification #: AZ0734

Arkansas Certification

California Certification #: 04222CA Colorado Certification #: PA01547 Connecticut Certification #: PH-0694

Delaware Certification EPA Region 4 DW Rad

Florida/TNI Certification #: E87683 Georgia Certification #: C040

Guam Certification

Florida: Cert E871149 SEKS WET

Hawaii Certification Idaho Certification Illinois Certification Indiana Certification Iowa Certification #: 391

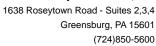
Kansas/TNI Certification #: E-10358 Kentucky Certification #: KY90133 KY WW Permit #: KY0098221 KY WW Permit #: KY0000221

Louisiana DHH/TNI Certification #: LA180012 Louisiana DEQ/TNI Certification #: 4086

Maine Certification #: 2017020 Maryland Certification #: 308

Massachusetts Certification #: M-PA1457 Michigan/PADEP Certification #: 9991 Missouri Certification #: 235
Montana Certification #: Cert0082
Nebraska Certification #: NE-OS-29-14
Nevada Certification #: PA014572018-1
New Hampshire/TNI Certification #: 297617
New Jersey/TNI Certification #: PA051
New Mexico Certification #: PA01457
New York/TNI Certification #: 10888

New York/TNI Certification #: 10888 North Carolina Certification #: 42706 North Dakota Certification #: R-190 Ohio EPA Rad Approval: #41249


Oregon/TNI Certification #: PA200002-010 Pennsylvania/TNI Certification #: 65-00282 Puerto Rico Certification #: PA01457 Rhode Island Certification #: 65-00282

South Dakota Certification
Tennessee Certification #: 02867

Utah/TNI Certification #: PA014572017-9
USDA Soil Permit #: P330-17-00091
Vermont Dept. of Health: ID# VT-0282
Virgin Island/PADEP Certification
Virginia/VELAP Certification #: 460198
Washington Certification #: C868
West Virginia DEP Certification #: 143
West Virginia DHHR Certification #: 9964C

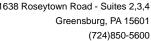
Texas/TNI Certification #: T104704188-17-3

Wisconsin Approve List for Rad Wyoming Certification #: 8TMS-L

SAMPLE SUMMARY

Project: 2202244
Pace Project No.: 30467306

Lab ID	Sample ID	Matrix	Date Collected	Date Received
30467306001	2202244-01	Water	02/08/22 14:45	02/16/22 10:00
30467306002	2202244-02	Water	02/08/22 12:45	02/16/22 10:00
30467306003	2202244-03	Water	02/07/22 15:15	02/16/22 10:00
30467306004	2202244-04	Water	02/07/22 14:00	02/16/22 10:00
30467306005	2202244-05	Water	02/07/22 12:30	02/16/22 10:00
30467306006	2202244-06	Water	02/07/22 11:15	02/16/22 10:00
30467306007	2202244-07	Water	02/07/22 16:00	02/16/22 10:00



SAMPLE ANALYTE COUNT

Project: 2202244 Pace Project No.: 30467306

Lab ID	Sample ID	Method	Analysts	Analytes Reported
30467306001	2202244-01	EPA 903.1	SLC	1
		EPA 904.0	JSM	1
30467306002	2202244-02	EPA 903.1	SLC	1
		EPA 904.0	JSM	1
30467306003	2202244-03	EPA 903.1	SLC	1
		EPA 904.0	JSM	1
30467306004	2202244-04	EPA 903.1	SLC	1
		EPA 904.0	JSM	1
30467306005	2202244-05	EPA 903.1	SLC	1
		EPA 904.0	JSM	1
30467306006	2202244-06	EPA 903.1	SLC	1
		EPA 904.0	JSM	1
30467306007	2202244-07	EPA 903.1	SLC	1
		EPA 904.0	JSM	1

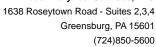
PASI-PA = Pace Analytical Services - Greensburg

ANALYTICAL RESULTS - RADIOCHEMISTRY

Project: 2202244 Pace Project No.: 30467306

Sample: 2202244-01 PWS:	Lab ID: 30467306 Site ID:	001 Collected: 02/08/22 14:45 Sample Type:	Received:	02/16/22 10:00	Matrix: Water	
Parameters	Method	Act ± Unc (MDC) Carr Trac	Units	Analyzed	CAS No.	Qual
	Pace Analytical Serv	ices - Greensburg				
Radium-226		0.359 ± 0.611 (1.08) C:NA T:94%		03/11/22 14:23	3 13982-63-3	
	Pace Analytical Serv	ices - Greensburg				
Radium-228		1.12 ± 0.425 (0.653) C:91% T:90%	pCi/L	03/09/22 11:55	5 15262-20-1	
Sample: 2202244-02 PWS:	Lab ID: 30467306 Site ID:	002 Collected: 02/08/22 12:45 Sample Type:	Received:	02/16/22 10:00	Matrix: Water	
Parameters	Method	Act ± Unc (MDC) Carr Trac	Units	Analyzed	CAS No.	Qual
	Pace Analytical Serv	ices - Greensburg				
Radium-226	EPA 903.1	0.326 ± 0.554 (0.978) C:NA T:95%	pCi/L	03/11/22 14:23	3 13982-63-3	
	Pace Analytical Serv	ices - Greensburg				
Radium-228		1.86 ± 0.523 (0.590) C:95% T:90%	pCi/L	03/09/22 11:58	5 15262-20-1	
Sample: 2202244-03	Lab ID: 30467306	003 Collected: 02/07/22 15:15	Received:	02/16/22 10:00	Matrix: Water	
PWS:	Site ID:	Sample Type:				
Parameters	Method	Act ± Unc (MDC) Carr Trac	Units	Analyzed	CAS No.	Qual
	Pace Analytical Serv	ices - Greensburg				
Radium-226		0.165 ± 0.377 (0.607) C:NA T:92%	pCi/L	03/11/22 14:23	3 13982-63-3	
	Pace Analytical Serv	ices - Greensburg				
Radium-228	EPA 904.0	1.37 ± 0.498 (0.737) C:92% T:78%	pCi/L	03/09/22 11:55	5 15262-20-1	
Sample: 2202244-04	Lab ID: 30467306	004 Collected: 02/07/22 14:00	Received:	02/16/22 10:00	Matrix: Water	
PWS:	Site ID:	Sample Type:				
Parameters	Method	Act ± Unc (MDC) Carr Trac	Units	Analyzed	CAS No.	Qual
	Pace Analytical Serv	ices - Greensburg				
Radium-226		0.269 ± 0.584 (1.08) C:NA T:90%	pCi/L	03/11/22 14:23	3 13982-63-3	
	Pace Analytical Serv	ices - Greensburg				
Radium-228		1.17 ± 0.448 (0.688) C:92% T:86%	pCi/L	03/09/22 11:55	5 15262-20-1	

REPORT OF LABORATORY ANALYSIS


This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, LLC.

ANALYTICAL RESULTS - RADIOCHEMISTRY

Project: 2202244
Pace Project No.: 30467306

Sample: 2202244-05 PWS:	Lab ID: 3046 7 Site ID:	7306005 Collected: 02/07/22 12:30 Sample Type:	Received:	02/16/22 10:00 Matrix: \	Nater
Parameters				Analyzed CA	S No. Qual
	Pace Analytical	Services - Greensburg			
Radium-226	EPA 903.1	0.224 ± 0.440 (0.803) C:NA T:98%	pCi/L	03/11/22 14:40 13982	2-63-3
	Pace Analytical	Services - Greensburg			
Radium-228	EPA 904.0	1.44 ± 0.473 (0.636) C:90% T:86%	pCi/L	03/09/22 11:55 15262	2-20-1
Sample: 2202244-06 PWS:	Lab ID: 3046 7 Site ID:	7306006 Collected: 02/07/22 11:15 Sample Type:	Received:	02/16/22 10:00 Matrix: \	Vater
Parameters	Parameters Method Act ± Un		Units	Analyzed CA	S No. Qual
	Pace Analytical	Services - Greensburg			
Radium-226	EPA 903.1	0.507 ± 0.577 (0.910) C:NA T:87%	pCi/L	03/11/22 14:40 13982	2-63-3
	Pace Analytical	Services - Greensburg			
Radium-228	EPA 904.0	1.03 ± 0.395 (0.602) C:89% T:92%	pCi/L	03/09/22 11:55 15262	2-20-1
Sample: 2202244-07	Lab ID: 30467		Received:	02/16/22 10:00 Matrix: \	
PWS:	Site ID:	Sample Type:			
Parameters	Method	Act ± Unc (MDC) Carr Trac	Units	Analyzed CAS	S No. Qual
	Pace Analytical	Services - Greensburg			
Radium-226	EPA 903.1	0.0826 ± 0.428 (0.889) C:NA T:85%	pCi/L	03/11/22 14:40 13982	2-63-3
	Pace Analytical	Services - Greensburg			
Radium-228	EPA 904.0	1.76 ± 0.561 (0.747) C:80% T:88%	pCi/L	03/09/22 11:55 15262	2-20-1

QUALITY CONTROL - RADIOCHEMISTRY

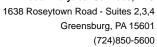
Project: 2202244
Pace Project No.: 30467306

QC Batch: 487439 Analysis Method: EPA 903.1

QC Batch Method: EPA 903.1 Analysis Description: 903.1 Radium-226

Laboratory: Pace Analytical Services - Greensburg

Associated Lab Samples: 30467306001, 30467306002, 30467306003, 30467306004, 30467306005, 30467306006, 30467306007


METHOD BLANK: 2357380 Matrix: Water

Associated Lab Samples: 30467306001, 30467306002, 30467306003, 30467306004, 30467306005, 30467306006, 30467306007

 Parameter
 Act ± Unc (MDC) Carr Trac
 Units
 Analyzed
 Qualifiers

 Radium-226
 -0.0709 ± 0.324 (0.763) C:NA T:96%
 pCi/L
 03/11/22 14:01

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

QUALITY CONTROL - RADIOCHEMISTRY

Project: 2202244
Pace Project No.: 30467306

QC Batch: 487441 Analysis Method: EPA 904.0

QC Batch Method: EPA 904.0 Analysis Description: 904.0 Radium 228

Laboratory: Pace Analytical Services - Greensburg

Associated Lab Samples: 30467306001, 30467306002, 30467306003, 30467306004, 30467306005, 30467306006, 30467306007

METHOD BLANK: 2357385 Matrix: Water

Associated Lab Samples: 30467306001, 30467306002, 30467306003, 30467306004, 30467306005, 30467306006, 30467306007

 Parameter
 Act ± Unc (MDC) Carr Trac
 Units
 Analyzed
 Qualifiers

 Radium-228
 0.805 ± 0.361 (0.590) C:88% T:87%
 pCi/L
 03/09/22 11:54

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

QUALIFIERS

Project: 2202244
Pace Project No.: 30467306

DEFINITIONS

DF - Dilution Factor, if reported, represents the factor applied to the reported data due to dilution of the sample aliquot.

ND - Not Detected at or above adjusted reporting limit.

TNTC - Too Numerous To Count

J - Estimated concentration above the adjusted method detection limit and below the adjusted reporting limit.

MDL - Adjusted Method Detection Limit.

PQL - Practical Quantitation Limit.

RL - Reporting Limit - The lowest concentration value that meets project requirements for quantitative data with known precision and bias for a specific analyte in a specific matrix.

S - Surrogate

1,2-Diphenylhydrazine decomposes to and cannot be separated from Azobenzene using Method 8270. The result for each analyte is a combined concentration.

Consistent with EPA guidelines, unrounded data are displayed and have been used to calculate % recovery and RPD values.

LCS(D) - Laboratory Control Sample (Duplicate)

MS(D) - Matrix Spike (Duplicate)

DUP - Sample Duplicate

RPD - Relative Percent Difference

NC - Not Calculable.

SG - Silica Gel - Clean-Up

U - Indicates the compound was analyzed for, but not detected.

N-Nitrosodiphenylamine decomposes and cannot be separated from Diphenylamine using Method 8270. The result reported for each analyte is a combined concentration.

Reported results are not rounded until the final step prior to reporting. Therefore, calculated parameters that are typically reported as "Total" may vary slightly from the sum of the reported component parameters.

Act - Activity

Date: 03/14/2022 09:36 PM

Unc - Uncertainty: For Safe Drinking Water Act (SDWA) analyses, the reported Unc. Is the calculated Count Uncertainty (95% confidence interval) using a coverage factor of 1.96. For all other matrices (non-SDWA), the reported Unc. is the calculated Expanded Uncertainty (aka Combined Standard Uncertainty, CSU), reported at the 95% confidence interval using a coverage factor of 1.96.

Gamma Spec: The Unc. reported for all gamma-spectroscopy analyses (EPA 901.1), is the calculated Expanded Uncertainty (CSU) at the 95.4% confidence interval, using a coverage factor of 2.0.

(MDC) - Minimum Detectable Concentration

Trac - Tracer Recovery (%)

Carr - Carrier Recovery (%)

Pace Analytical is TNI accredited. Contact your Pace PM for the current list of accredited analytes.

TNI - The NELAC Institute.

SUBCONTRACT ORDER

T-EVE	ORATORY	****			ORDER
Sending Laboratory:		Sub	contracted Lab	oratory:	
Micro-Methods Laboratory, Inc. 6500 Sunplex Drive Ocean Springs, MS 39564 Phone: 228.875.6420 Fax: 228.875.6423		1 (Pace Analytical-7 1638 Roseytown R Greensburg, PA 1 Phone: (724) 850- Fax: -	5601	3, 4
Project Manager: Teresa Meins			0#:304 		6
Work Order: 2202244		No.			
Analysis	Due E	xpires	Comments		
Sample ID: 2202244-01 <i>Water</i> 5	Sampled: 02/08/2022	2 14:45	Sample Name:	MW-2	w
Radium, Total 226 & 228 by EPA 903.1 & 90 Containers Supplied: 1000mL Plastic w/HNO3 (A) 1000mL Plastic w	, ,	/2022 14:45	5		
	Sampled: 02/08/2022	2 12:45	Sample Name:	MW-3	ana
Radium, Total 226 & 228 by EPA 903.1 & 90	02/17/2022 03/08/	2022 12:45	5		
Containers Supplied: 1000mL Plastic w/HNO3 (A) 1000mL Plastic v	w/HNO3 (B)				
Sample ID: 2202244-03 Water 3	Sampled: 02/07/2022	2 15:15	Sample Name:	MW-4	(4) 3
Radium,Total 226 & 228 by EPA 903.1 & 90	02/17/2022 03/07/	2022 15:15	5		The second secon
Containers Supplied: 1000mL Plastic w/HNO3 (A) 1000mL Plastic v	w/HNO3 (B) 1000mL Plast	ic w/HNO3 (0	5) 1000mL Plastic w/	HNO3 (H)	
Sample ID: 2202244-04 Water 3	Sampled: 02/07/2022	2 14:00	Sample Name:	MW-5	WY
Radium,Total 226 & 228 by EPA 903.1 & 90	02/17/2022 03/07/	2022 14:00)		
Containers Supplied: 1000mL Plastic w/HNO3 (A) 1000mL Plastic v	w/HNO3 (B)				
Sample ID: 2202244-05 Water 3	Sampled: 02/07/2022	2 12:30	Sample Name:	MW-6	ως <u>ς</u>
Radium,Total 226 & 228 by EPA 903.1 & 90	02/17/2022 03/07/	2022 12:30)		
Enah Jomeh 410)	1220 1630	***************************************	WS	2/10	122 ° 1630
Released By Released By	Date 2/10/2010/00	B	ved By LICA C ved By	2/16	Date Date
Released By	Date	Recei	ved By		Date
Released By	Date	Recei	ved By		Date

Date

Released By

Received By

Date

SUBCONTRACT ORDER

(Continued) $\overset{\leftarrow}{4}$ $\overset{=}{3}$ 0 4 6 7 3 0 6

Work Order: 2202244 (Continued)

Analysis	Due	Expires	Comments	
Containers Supplied: 1000mL Plastic w/HNO3 (A) 1000mL Plastic	w/HNO3 (B)			
Sample ID: 2202244-06 Water	Sampled: 02/0	7/2022 11:15	Sample Name: MW-10	W6
Radium, Total 226 & 228 by EPA 903.1 & 9	00 02/17/2022	03/07/2022 11:1	5	
Containers Supplied: 1000mL Plastic w/HNO3 (A) 1000mL Plastic	: w/HNO3 (B)			
Sample ID: 2202244-07 Water	Sampled: 02/0	7/2022 16:00	Sample Name: BD-1	W7
Radium, Total 226 & 228 by EPA 903.1 & 9	00 02/17/2022	03/07/2022 16:0	0	
Containers Supplied: 1000mL Plastic w/HNO3 (A) 1000mL Plastic	: w/HNO3 (B)			

Smahlomeh 4	10/22 0 1630	IMS	2/10/220 1630
Released By	Date	Received By	Date
WS	2/10/22/100	Rebecca Ce	2/16/22100
Released By	Date	Received By	Date
Released By	Date	Received By	Date
Released By	Date	Received By	Date
Released By	Date	Received By	Date

Pittsburgh Lab Sample Condi	ion Upon Receipt	
Face Analytical Client Name:	Micro-Nethods Labroject ## 30467	306
Courier: Fed Ex OUPS USPS Clier Tracking #: 123530630531694		-
Custody Seal on Cooler/Box Present: yes	no Seals intact: yes no	
Thermometer Used	Type of Ice: Wet Blue (None)	
Cooler Temperature Observed Temp	°C Correction Factor: °C Final Temp: °C	
Temp should be above freezing to 6°C		
NAMED TO SERVICE THE SERVICE STATES AND SERVICE STATES.	pH paper Lot# Date and Initials of person examining contents:	
Comments:	Yes No N/A HCVQSD1 Contents: 2705/61/ PME	
Chain of Custody Present:	X	
Chain of Custody Filled Out:	2.	
Chain of Custody Relinquished:	X 3.	_
Sampler Name & Signature on COC:	X 4. NN name or signature	
Sample Labels match COC:	5.	
-Includes date/time/ID Matrix:	<u> </u>	
Samples Arrived within Hold Time:	6.	
Short Hold Time Analysis (<72hr remaining):	7.	
Rush Turn Around Time Requested:	8.	
Sufficient Volume:	9.	
Correct Containers Used:	10.	
-Pace Containers Used:	X	
Containers Intact:	X 11.	
Orthophosphate field filtered	12.	
Hex Cr Aqueous sample field filtered	13.	
Organic Samples checked for dechlorination:	14.	
Filtered volume received for Dissolved tests	X 15.	_
All containers have been checked for preservation. exceptions: VOA, coliform, TOC, O&G, Phenolics	$\frac{\chi}{Radon}$ 16. pH c	
Non-aqueous matrix	1	
All containers meet method preservation requirements.	Initial when Date/time of preservation	
·	Lot # of added preservative	
Headspace in VOA Vials (>6mm):	17.	7
Trip Blank Present:	18.	
Trip Blank Custody Seals Present		
Rad Samples Screened < 0.5 mrem/hr	Initial when completed: A Date: A 37 70 Survey Meter SN: 151-3	7
Client Notification/ Resolution:	/	
Person Contacted:	Date/Time: Contacted By:	
Comments/ Resolution:		
		-
		_

 \square A check in this box indicates that additional information has been stored in ereports.

Note: Whenever there is a discrepancy affecting North Carolina compliance samples, a copy of this form will be sent to the North Carolina DEHNR Certification Office (i.e. out of hold, incorrect preservative, out of temp, incorrect containers)

*PM review is documented electronically in LIMS. When the Project Manager closes the SRF Review schedule in LIMS. The review is in the Status section of the Workorder Edit Screen.

Mailing Address: PO Box 1410 Ocean Springs, MS 39566-1410 6500 Sunplex Drive Ocean Springs, MS 39564 228.875.6420 Phone 228.875.6423 Fax

March 15, 2022

Ken Ruckstuhl Work Order #: 2202244

Environmental Management Services PO Box 15369

Hattiesburg, MS 39404-5369

RE: Cooperative Energy CCR Annual

Purchase Order #:

Enclosed are Micro-Methods Laboratory, Inc. results of analyses performed on samples received 02/09/2022 10:48. If you have any questions concerning this report, please feel free to contact the office.

Sincerely,

Mitch Spicer

Lab Director *Micro-Methods Laboratory, Inc.*

DISCLAIMER

The results only relate to the items or the sample and/or samples received by the laboratory. This report shall not be reproduced except in full, without the approval of the laboratory. All NELAP certified test methods performed meet the requirements of NELAC 2009 Standards. Any variances and/or deviations specific to this analytical report are referenced in the lab report using qualifiers and detailed explanations found in the case narrative.

PO Box 15369

Hattiesburg MS, 39404-5369

Project: Cooperative Energy CCR Annual

Project Number: SOU2-21-001
Project Manager: Ken Ruckstuhl

Reported: 03/15/2022 11:01

ANALYTICAL REPORT FOR SAMPLES

Sample ID	Laboratory ID	Matrix	Date/Time Sampled	Sampled by	Date/Time Received
MW-2	2202244-01	Water	02/08/2022 14:45	Alan Niven	02/09/2022 10:48
MW-3	2202244-02	Water	02/08/2022 12:45	Alan Niven	02/09/2022 10:48
MW-4	2202244-03	Water	02/07/2022 15:15	Alan Niven	02/09/2022 10:48
MW-5	2202244-04	Water	02/07/2022 14:00	Alan Niven	02/09/2022 10:48
MW-6	2202244-05	Water	02/07/2022 12:30	Alan Niven	02/09/2022 10:48
MW-10	2202244-06	Water	02/07/2022 11:15	Alan Niven	02/09/2022 10:48
BD-1	2202244-07	Water	02/07/2022 16:00	Alan Niven	02/09/2022 10:48

Environmental Management Services Project: Cooperative Energy CCR Annual

 PO Box 15369
 Project Number: SOU2-21-001
 Reported:

 Hattiesburg MS, 39404-5369
 Project Manager: Ken Ruckstuhl
 03/15/2022 11:01

Sample Receipt Conditions

Date/Time Received: 2/9/2022 10:48:00AM Shipped by: Fed Ex


Received by: Sarah E. Tomek Submitted by: Alan Niven

Date/Time Logged: 2/9/2022 12:42:00PM Logged by: Sarah E. Tomek

Cooler ID: #1126 Receipt Temperature: 1.9 °C

Yes Cooler Custody Seals Present Yes Received on Ice but Not Frozen Containers Intact Yes No Ice, Short Trip No COC/Labels Agree Yes **Obvious Contamination** No Labels Complete Rush to meet HT Yes No COC Complete Yes Received within HT Yes Volatile Vial Headspace >6mm Proper Containers for Analysis No Yes Field Sheet/Instructions Included Correct Preservation No Yes Samples Rejected/Documented in Log No Adequate Sample for Analysis Yes Temp Taken From Temp Blank Yes Sample Custody Seals Present No Temp Taken From Sample Container Samples Missing from COC/Cooler No No

Temp Taken From Cooler No
COC meets acceptance criteria Yes

Environmental Management Services Project: Cooperative Energy CCR Annual

 PO Box 15369
 Project Number: SOU2-21-001
 Reported:

 Hattiesburg MS, 39404-5369
 Project Manager: Ken Ruckstuhl
 03/15/2022 11:01

Cooler Custody Seals Present	Yes	Received on Ice but Not Frozen	Yes
Containers Intact	Yes	No Ice, Short Trip	No
COC/Labels Agree	Yes	Obvious Contamination	No
Labels Complete	Yes	Rush to meet HT	No
COC Complete	Yes	Received within HT	Yes
Volatile Vial Headspace >6mm	No	Proper Containers for Analysis	Yes
Field Sheet/Instructions Included	No	Correct Preservation	Yes
Samples Rejected/Documented in Log	No	Adequate Sample for Analysis	Yes
Temp Taken From Temp Blank	Yes	Sample Custody Seals Present	No
Temp Taken From Sample Container	No	Samples Missing from COC/Cooler	No
Temp Taken From Cooler	No	, •	
COC meets acceptance criteria	Yes		

PO Box 15369

Hattiesburg MS, 39404-5369

Project: Cooperative Energy CCR Annual

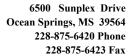
Project Number: SOU2-21-001
Project Manager: Ken Ruckstuhl

Reported: 03/15/2022 11:01

CASE NARRATIVE SUMMARY

All reported results are within Micro-Methods Laboratory, Inc.defined laboratory quality control objectives unless detailed in narrative summary or identified as qualifications. NOTE: All results listed on this report are calculated on a wet weight basis (as received by the laboratory) unless otherwise noted in the analysis qualification sections.

Summary Comments:


See attached results from Sub-Contract Laboratory

Total Metals-EPA 200.8 Rev 5.4

Qualifiers:

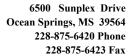
L1 LCS and/or LCSD Recovery Limit exceeded.

Beryllium [He], Cobalt [He] 2B28035-BS1

PO Box 15369

Hattiesburg MS, 39404-5369

Project: Cooperative Energy CCR Annual


Project Number: SOU2-21-001
Project Manager: Ken Ruckstuhl

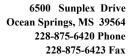
Reported: 03/15/2022 11:01

MW-2

2202244-01 (Water)

							Date Time	Date Time		
Analyte	Result	MRL	Units	Dil	Batch	Analyst	Prepared	Analyzed	Method	Qualifiers
Classical Chemistry Parame	eters									
Fluoride	0.51	0.50	mg/L	1.0	2B09052	SSK	02/09/2022 13:20	02/09/2022 13:20	SM 4500-F C 2011	
Metals by EPA 200 Series M	ethods ICP-AES									
Barium 455.403 [Radial]	0.029	0.010	mg/L	1.0	2B10068	CLV	02/11/2022 09:00	03/01/2022 16:44	EPA 200.7 Rev 4.4	
Lithium 610.362 [Axial]	ND	0.040	"	"	"	CLV		03/07/2022 14:56	"	
Metals by EPA 200 Series M	ethods ICP-MS [Analysis M	lode]							
Antimony [He]	ND	0.00200	mg/L	1.0	2B28035	CLB		03/02/2022 21:14	EPA 200.8 Rev 5.4	
Arsenic [NG]	ND	0.00200	"	"	"	CLB			"	
Beryllium [He]	0.00470	0.00400	"	"	"	CLB			"	
Cadmium [He]	ND	0.00500	"	"	"	CLB			"	
Chromium [He]	ND	0.0100	"	"	"	CLB		"	"	
Cobalt [He]	0.0956	0.00100	"	"	"	CLB			"	
Lead [He]	0.00241	0.00100	"	"	"	CLB			"	
Molybdenum [He]	ND	0.00500	"	"	"	CLB			"	
Selenium [NG]	ND	0.0500	"	"	"	CLB		"	"	
Thallium [He]	ND	0.00200	"	"	"	CLB		03/04/2022 13:29	"	
Mercury by EPA 200 Series	Methods CVAAS	3								
Mercury	ND	0.002	mg/L	1.0	2B25019	TKM	02/25/2022 09:00	02/28/2022 15:09	EPA 245.1 Rev 3.0	

PO Box 15369 Hattiesburg MS, 39404-5369 Project: Cooperative Energy CCR Annual


Project Number: SOU2-21-001
Project Manager: Ken Ruckstuhl

Reported: 03/15/2022 11:01

MW-3

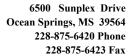
2202244-02 (Water)

							Date Time	Date Time		
Analyte	Result	MRL	Units	Dil	Batch	Analyst	Prepared	Analyzed	Method	Qualifiers
Classical Chemistry Parame	eters									
Fluoride	ND	0.50	mg/L	1.0	2B09052	SSK	02/09/2022 13:22	02/09/2022 13:22	SM 4500-F C 2011	
Metals by EPA 200 Series Me	ethods ICP-AES									
Barium 455.403 [Radial]	0.038	0.010	mg/L	1.0	2B10068	CLV	02/11/2022 09:00	03/01/2022 16:55	EPA 200.7 Rev 4.4	
Lithium 610.362 [Axial]	0.198	0.040	"	"	"	CLV		03/07/2022 15:07	"	
Metals by EPA 200 Series Me	ethods ICP-MS [Analysis N	lode]							
Antimony [He]	ND	0.00200	mg/L	1.0	2B28035	CLB		03/02/2022 22:26	EPA 200.8 Rev 5.4	
Arsenic [NG]	ND	0.00200	"	"	"	CLB			"	
Beryllium [He]	ND	0.00400	"	"	"	CLB			"	
Cadmium [He]	ND	0.00500	"	"	"	CLB				
Chromium [He]	ND	0.0100	"	"	"	CLB				
Cobalt [He]	0.0249	0.00100	"	"	"	CLB		03/02/2022 21:50	"	
Lead [He]	0.00604	0.00100	"	"	"	CLB		03/09/2022 14:21	n .	
Molybdenum [He]	ND	0.00500	"	"	"	CLB		03/02/2022 22:26	"	
Selenium [NG]	ND	0.0500	"	"	"	CLB			"	
Thallium [He]	ND	0.00200	"	"	"	CLB		03/04/2022 13:42	"	
Mercury by EPA 200 Series I	Methods CVAAS	}								
Mercury	ND	0.002	mg/L	1.0	2B25019	TKM	02/25/2022 09:00	02/28/2022 15:09	EPA 245.1 Rev 3.0	

PO Box 15369

Hattiesburg MS, 39404-5369

Project: Cooperative Energy CCR Annual


Project Number: SOU2-21-001
Project Manager: Ken Ruckstuhl

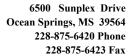
Reported: 03/15/2022 11:01

MW-4

2202244-03 (Water)

							Date Time	Date Time		
Analyte	Result	MRL	Units	Dil	Batch	Analyst	Prepared	Analyzed	Method	Qualifiers
Classical Chemistry Parameter	'S									
Fluoride	ND	0.50	mg/L	1.0	2B09052	SSK	02/09/2022 13:24	02/09/2022 13:24	SM 4500-F C 2011	
Metals by EPA 200 Series Meth	ods ICP-AES	1								
Barium 455.403 [Radial]	0.039	0.010	mg/L	1.0	2B10068	CLV	02/11/2022 09:00	03/01/2022 16:59	EPA 200.7 Rev 4.4	
Lithium 610.362 [Axial]	ND	0.040	"	"	"	CLV		03/07/2022 15:10	"	
Metals by EPA 200 Series Meth	ods ICP-MS	Analysis M	lode]							
Antimony [He]	ND	0.00200	mg/L	1.0	2B28035	CLB		03/02/2022 21:56	EPA 200.8 Rev 5.4	
Arsenic [NG]	ND	0.00200	"	"	"	CLB			"	
Beryllium [He]	ND	0.00400	"	"	"	CLB	"		"	
Cadmium [He]	ND	0.00500	"	"	"	CLB			"	
Chromium [He]	ND	0.0100	u	"	"	CLB				
Cobalt [He]	0.0263	0.00100	u	"	"	CLB			"	
Lead [He]	ND	0.00100	"	"	"	CLB			"	
Molybdenum [He]	ND	0.00500	"	"	"	CLB				
Selenium [NG]	ND	0.0500	"	"	"	CLB			п	
Thallium [He]	ND	0.00200	"	"	"	CLB	"	03/04/2022 13:47	n .	
Mercury by EPA 200 Series Met	thods CVAAS	3								
Mercury	ND	0.002	mg/L	1.0	2B25019	TKM	02/25/2022 09:00	02/28/2022 15:09	EPA 245.1 Rev 3.0	

PO Box 15369 Hattiesburg MS, 39404-5369 Project: Cooperative Energy CCR Annual


Project Number: SOU2-21-001
Project Manager: Ken Ruckstuhl

Reported: 03/15/2022 11:01

MW-5

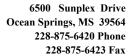
2202244-04 (Water)

Analyte	Result	MRL	Units	Dil	Batch	Analyst	Date Time Prepared	Date Time Analyzed	Method	Qualifiers
Analyte		IVINL	Ullis	DII	Daton	Allalyst	Терагса	7 thatyzea	Metriod	Qualifiers
Classical Chemistry Parame										
Fluoride	ND	0.50	mg/L	1.0	2B09052	SSK	02/09/2022 13:26	02/09/2022 13:26	SM 4500-F C 2011	
Metals by EPA 200 Series M	lethods ICP-AES	1								
Barium 455.403 [Radial]	0.061	0.010	mg/L	1.0	2B10068	CLV	02/11/2022 09:00	03/01/2022 17:02	EPA 200.7 Rev 4.4	
Lithium 610.362 [Axial]	2.14	0.040	"	"	"	CLV		03/07/2022 15:14	"	
Metals by EPA 200 Series M	lethods ICP-MS	Analysis M	lode]							
Antimony [He]	ND	0.00200	mg/L	1.0	2B28035	CLB		03/02/2022 22:02	EPA 200.8 Rev 5.4	
Arsenic [NG]	ND	0.00200	"	"	"	CLB		"	"	
Beryllium [He]	ND	0.00400	"	"	"	CLB			•	
Cadmium [He]	ND	0.00500	"	"	"	CLB			"	
Chromium [He]	ND	0.0100	u	"	"	CLB			"	
Cobalt [He]	0.0152	0.00100	u	"	"	CLB			"	
Lead [He]	ND	0.00100	"	"	"	CLB		03/09/2022 14:26	"	
Molybdenum [He]	2.59	0.00500	"	5.0	"	CLB		"	"	
Selenium [NG]	ND	0.0500	"	1.0	"	CLB		03/02/2022 22:02	"	
Thallium [He]	ND	0.00200	"	u	"	CLB		03/04/2022 13:51	"	
Mercury by EPA 200 Series	Methods CVAAS	3								
Mercury	ND	0.002	mg/L	1.0	2B25019	TKM	02/25/2022 09:00	02/28/2022 15:09	EPA 245.1 Rev 3.0	

PO Box 15369

Hattiesburg MS, 39404-5369

Project: Cooperative Energy CCR Annual


Project Number: SOU2-21-001
Project Manager: Ken Ruckstuhl

Reported: 03/15/2022 11:01

MW-6

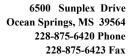
2202244-05 (Water)

							Date Time	Date Time		
Analyte	Result	MRL	Units	Dil	Batch	Analyst	Prepared	Analyzed	Method	Qualifiers
Classical Chemistry Parameter	'S									
Fluoride	ND	0.50	mg/L	1.0	2B09052	SSK	02/09/2022 13:28	02/09/2022 13:28	SM 4500-F C 2011	
Metals by EPA 200 Series Meth	ods ICP-AES									
Barium 455.403 [Radial]	0.155	0.010	mg/L	1.0	2B10068	CLV	02/11/2022 09:00	03/01/2022 17:06	EPA 200.7 Rev 4.4	
Lithium 610.362 [Axial]	ND	0.040	"	"	"	CLV		03/07/2022 15:18	"	
Metals by EPA 200 Series Meth	ods ICP-MS [Analysis N	lode]							
Antimony [He]	ND	0.00200	mg/L	1.0	2B28035	CLB	"	03/02/2022 22:08	EPA 200.8 Rev 5.4	
Arsenic [NG]	ND	0.00200	"	"	"	CLB			"	
Beryllium [He]	ND	0.00400	u .	"	"	CLB			"	
Cadmium [He]	ND	0.00500	"	"	"	CLB				
Chromium [He]	ND	0.0100	"	"	"	CLB			"	
Cobalt [He]	0.00156	0.00100	"	"	"	CLB			ī	
Lead [He]	ND	0.00100	"	"	"	CLB			"	
Molybdenum [He]	ND	0.00500	"	"	n n	CLB			"	
Selenium [NG]	ND	0.0500	"	"	"	CLB			"	
Thallium [He]	ND	0.00200	"	"	"	CLB	"	03/04/2022 13:55	"	
Mercury by EPA 200 Series Me	thods CVAAS	1								
Mercury	ND	0.002	mg/L	1.0	2B25019	TKM	02/25/2022 09:00	02/28/2022 15:09	EPA 245.1 Rev 3.0	·

PO Box 15369

Hattiesburg MS, 39404-5369

Project: Cooperative Energy CCR Annual


Project Number: SOU2-21-001 Project Manager: Ken Ruckstuhl

Reported: 03/15/2022 11:01

MW-10

2202244-06 (Water)

Analyte	Result	MRL	Units	Dil	Batch	Analyst	Date Time Prepared	Date Time Analyzed	Method	Qualifiers
Classical Chemistry Parameter		WILL	01110		Baton	, maryot	,	-,	Wictiou	Qualificis
Fluoride	ND	0.50	mg/L	1.0	2B09052	SSK	02/09/2022 13:49	02/09/2022 13:49	SM 4500-F C 2011	
Metals by EPA 200 Series Meth	ods ICP-AES									
Barium 455.403 [Radial]	0.035	0.010	mg/L	1.0	2B10068	CLV	02/11/2022 09:00	03/01/2022 17:10	EPA 200.7 Rev 4.4	
Lithium 610.362 [Axial]	0.352	0.040	"	"	"	CLV		03/07/2022 15:21	"	
Metals by EPA 200 Series Meth	ods ICP-MS	Analysis M	lode]							
Antimony [He]	ND	0.00200	mg/L	1.0	2B28035	CLB		03/02/2022 22:13	EPA 200.8 Rev 5.4	
Arsenic [NG]	ND	0.00200	"	"	"	CLB			"	
Beryllium [He]	0.00932	0.00400	"	"	"	CLB		"	"	
Cadmium [He]	ND	0.00500	"	"	"	CLB			"	
Chromium [He]	ND	0.0100	"	u u	"	CLB			"	
Cobalt [He]	0.0893	0.00100	"	"	"	CLB			"	
Lead [He]	0.00256	0.00100	"	"	"	CLB		"	"	
Molybdenum [He]	ND	0.00500	"	"	"	CLB			"	
Selenium [NG]	ND	0.0500	"	"	"	CLB			"	
Thallium [He]	ND	0.00200	u u	"	"	CLB		03/04/2022 14:26	u	
Mercury by EPA 200 Series Met	hods CVAAS	;						25		
Mercury	ND	0.002	mg/L	1.0	2B25019	TKM	02/25/2022 09:00	02/28/2022 15:09	EPA 245.1 Rev 3.0	

PO Box 15369

Hattiesburg MS, 39404-5369

Project: Cooperative Energy CCR Annual

Project Number: SOU2-21-001
Project Manager: Ken Ruckstuhl

Reported: 03/15/2022 11:01

BD-1

2202244-07 (Water)

Analyte	Result	MRL	Units	Dil	Batch	Analyst	Date Time Prepared	Date Time Analyzed	Method	Qualifiers
Classical Chemistry Param	eters									
Fluoride	ND	0.50	mg/L	1.0	2B09052	SSK	02/09/2022 13:52	02/09/2022 13:52	SM 4500-F C 2011	
Metals by EPA 200 Series N	lethods ICP-AES									
Barium 455.403 [Radial]	0.038	0.010	mg/L	1.0	2B10068	CLV	02/11/2022 09:00	03/01/2022 17:13	EPA 200.7 Rev 4.4	
Lithium 610.362 [Axial]	0.197	0.040	"	"	"	CLV		03/07/2022 15:25	"	
Metals by EPA 200 Series N	lethods ICP-MS [Analysis N	lode]							
Antimony [He]	ND	0.00200	mg/L	1.0	2B28035	CLB		03/02/2022 22:20	EPA 200.8 Rev 5.4	
Arsenic [NG]	ND	0.00200	"	"	"	CLB				
Beryllium [He]	ND	0.00400	"	"	"	CLB				
Cadmium [He]	ND	0.00500	"	"	"	CLB			•	
Chromium [He]	ND	0.0100	"	"	"	CLB			•	
Cobalt [He]	0.0253	0.00100	"	"	n n	CLB			"	
Lead [He]	0.00517	0.00100	"	"	"	CLB			"	
Molybdenum [He]	ND	0.00500	"	"	"	CLB		03/09/2022 14:30	"	
Selenium [NG]	ND	0.0500	"	"	"	CLB		03/02/2022 22:20	"	
Thallium [He]	ND	0.00200	"	"	"	CLB		03/04/2022 14:31	"	
Mercury by EPA 200 Series	Methods CVAAS	3								
Mercury	ND	0.002	mg/L	1.0	2B25019	TKM	02/25/2022 09:00	02/28/2022 15:09	EPA 245.1 Rev 3.0	

PO Box 15369

Hattiesburg MS, 39404-5369

Project: Cooperative Energy CCR Annual

Project Number: SOU2-21-001
Project Manager: Ken Ruckstuhl

Reported: 03/15/2022 11:01

Classical Chemistry Parameters - Quality Control

Analyte	Analyzed	Result	MRL	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Qualifiers
Batch 2B09052 - Default Prep GenCher	•										
Blank (2B09052-BLK1)											
Fluoride	2/9/22 13:00	ND	0.50	mg/L							
LCS (2B09052-BS1)											
Fluoride	2/9/22 13:08	1.81	0.50	mg/L	2.00		90.5	83.3-107			
LCS Dup (2B09052-BSD1)											
Fluoride	2/9/22 13:10	1.85	0.50	mg/L	2.00		92.5	83.3-107	2.19	30	
Duplicate (2B09052-DUP1)			Source: 22021	96-03							
Fluoride	2/9/22 13:19	0.27	0.50	mg/L		0.25			10.4	20	
Matrix Spike (2B09052-MS1)			Source: 22021	96-03							
Fluoride	2/9/22 13:16	4.13	0.50	mg/L	4.00	0.25	97.1	79.3-113			
Matrix Spike Dup (2B09052-MSD1)			Source: 22021	96-03							
Fluoride	2/9/22 13:18	4.37	0.50	mg/L	4.00	0.25	103	79.3-113	5.65	30	

PO Box 15369 Pr

Hattiesburg MS, 39404-5369

Project: Cooperative Energy CCR Annual

Project Number: SOU2-21-001
Project Manager: Ken Ruckstuhl

Reported: 03/15/2022 11:01

Metals by EPA 200 Series Methods ICP-AES - Quality Control

Analyte	Analyzed	Result	MRL	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Qualifiers
Batch 2B10068 - EPA 200.2 DCN 1017	Rev 10										
Blank (2B10068-BLK1)											
Barium 455.403 [Radial]	3/1/22 16:33	ND	0.010	mg/L							
Lithium 610.362 [Axial]	3/7/22 14:45	ND	0.040								
LCS (2B10068-BS1)											
Barium 455.403 [Radial]	3/1/22 16:37	0.220	0.010	mg/L	0.200		110	85-115			
Lithium 610.362 [Axial]	3/7/22 14:49	0.227	0.040		0.200		113	85-115			
LCS Dup (2B10068-BSD1)											
Barium 455.403 [Radial]	3/1/22 16:40	0.226	0.010	mg/L	0.200		113	85-115	2.68	20	
Lithium 610.362 [Axial]	3/7/22 14:52	0.226	0.040		0.200		113	85-115	0.323	20	
Matrix Spike (2B10068-MS1)			Source: 22022	44-01							
Barium 455.403 [Radial]	3/1/22 16:48	0.257	0.010	mg/L	0.200	0.029	114	70-130			
Lithium 610.362 [Axial]	3/7/22 14:59	0.199	0.040		0.200	ND	99.6	70-130			
Matrix Spike Dup (2B10068-MSD1)			Source: 22022	44-01							
Barium 455.403 [Radial]	3/1/22 16:51	0.259	0.010	mg/L	0.200	0.029	115	70-130	0.721	20	
Lithium 610.362 [Axial]	3/7/22 15:03	0.195	0.040		0.200	ND	97.7	70-130	1.93	20	

Project: Cooperative Energy CCR Annual

PO Box 15369 Hattiesburg MS, 39404-5369 Project Number: SOU2-21-001 Reported:

Project Manager: Ken Ruckstuhl 03/15/2022 11:01

Metals by EPA 200 Series Methods ICP-MS [Analysis Mode] - Quality Control

Analyte	Analyzed	Result	MRL	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Qualifiers
Batch 2B28035 - EPA 200.2 DCN	1017 Rev 10										
Blank (2B28035-BLK1)											
Antimony [He]	3/2/22 20:57	ND	0.00200	mg/L							
Arsenic [NG]	3/2/22 20:57	ND	0.00200								
Barium [He]	3/2/22 20:57	ND	0.00100								
Beryllium [He]	3/2/22 20:57	ND	0.00400								
Cadmium [He]	3/2/22 20:57	ND	0.00500								
Chromium [He]	3/2/22 20:57	ND	0.0100								
Cobalt [He]	3/2/22 20:57	ND	0.00100								
Lead [He]	3/2/22 20:57	ND	0.00100								
Molybdenum [He]	3/2/22 20:57	ND	0.00500								
Selenium [NG]	3/2/22 20:57	ND	0.0500								
Thallium [He]	3/4/22 13:16	ND	0.00200								
LCS (2B28035-BS1)											
Antimony [He]	3/2/22 21:03	0.228	0.00400	mg/L	0.200		114	85-115			
Arsenic [NG]	3/2/22 21:03	0.222	0.00400		0.200		111	85-115			
Barium [He]	3/2/22 21:03	0.224	0.00200		0.200		112	85-115			
Beryllium [He]	3/2/22 21:03	0.235	0.00200		0.200		117	85-115			L1
Cadmium [He]	3/2/22 21:03	0.226	0.00200		0.200		113	85-115			
Chromium [He]	3/2/22 21:03	0.216	0.00200		0.200		108	85-115			
Cobalt [He]	3/2/22 21:03	0.236	0.00200		0.200		118	85-115			L1
Lead [He]	3/2/22 21:03	0.216	0.00200		0.200		108	85-115			
Molybdenum [He]	3/2/22 21:03	0.198	0.00200		0.200		98.8	85-115			
Selenium [NG]	3/2/22 21:03	0.220	0.0100		0.200		110	85-115			
Thallium [He]	3/4/22 13:20	0.224	0.00400		0.200		112	85-115			
LCS Dup (2B28035-BSD1)											
Antimony [He]	3/2/22 21:09	0.217	0.00400	mg/L	0.200		108	85-115	5.25	20	
Arsenic [NG]	3/2/22 21:09	0.209	0.00400		0.200		104	85-115	6.19	20	
Barium [He]	3/2/22 21:09	0.215	0.00200		0.200		107	85-115	4.47	20	
Beryllium [He]	3/2/22 21:09	0.226	0.00200		0.200		113	85-115	3.91	20	
Cadmium [He]	3/2/22 21:09	0.215	0.00200		0.200		108	85-115	5.01	20	
Chromium [He]	3/2/22 21:09	0.205	0.00200		0.200		102	85-115	5.36	20	
Cobalt [He]	3/2/22 21:09	0.225	0.00200		0.200		112	85-115	4.79	20	
Lead [He]	3/2/22 21:09	0.199	0.00200		0.200		99.7	85-115	8.10	20	
Molybdenum [He]	3/2/22 21:09	0.189	0.00200		0.200		94.4	85-115	4.57	20	
Selenium [NG]	3/2/22 21:09	0.210	0.0100		0.200		105	85-115	5.06	20	
Thallium [He]	3/4/22 13:25	0.216	0.00400		0.200		108	85-115	3.68	20	

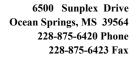
Project: Cooperative Energy CCR Annual

PO Box 15369 Hattiesburg MS, 39404-5369 Project Number: SOU2-21-001
Project Manager: Ken Ruckstuhl

Reported: 03/15/2022 11:01

Metals by EPA 200 Series Methods ICP-MS [Analysis Mode] - Quality Control

Analyte	Analyzed	Result	MRL	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Qualifiers
Batch 2B28035 - EPA 200.2 DCN 1	017 Rev 10										
Matrix Spike (2B28035-MS1)			Source: 220224	14-01							
Antimony [He]	3/2/22 21:20	0.224	0.00400	mg/L	0.200	ND	112	70-130			
Arsenic [NG]	3/2/22 21:20	0.217	0.00400		0.200	ND	108	70-130			
Barium [He]	3/2/22 21:20	0.252	0.00200		0.200	0.028	112	70-130			
Beryllium [He]	3/2/22 21:20	0.223	0.00200		0.200	0.005	109	70-130			
Cadmium [He]	3/2/22 21:20	0.215	0.00200		0.200	0.0003	107	70-130			
Chromium [He]	3/2/22 21:20	0.205	0.00200		0.200	0.002	101	70-130			
Cobalt [He]	3/2/22 21:20	0.316	0.00200		0.200	0.096	110	70-130			
Lead [He]	3/2/22 21:20	0.215	0.00200		0.200	0.002	106	70-130			
Molybdenum [He]	3/2/22 21:20	0.207	0.00200		0.200	0.0004	103	70-130			
Selenium [NG]	3/2/22 21:20	0.237	0.0100		0.200	0.025	106	70-130			
Thallium [He]	3/4/22 14:21	0.227	0.00400	"	0.200	ND	114	70-130			
Matrix Spike Dup (2B28035-MSD1))		Source: 220224	14-01							
Antimony [He]	3/2/22 21:26	0.218	0.00400	mg/L	0.200	ND	109	70-130	3.00	20	
Arsenic [NG]	3/2/22 21:26	0.215	0.00400		0.200	ND	108	70-130	0.838	20	
Barium [He]	3/2/22 21:26	0.244	0.00200		0.200	0.028	108	70-130	3.46	20	
Beryllium [He]	3/2/22 21:26	0.217	0.00200		0.200	0.005	106	70-130	2.53	20	
Cadmium [He]	3/2/22 21:26	0.208	0.00200		0.200	0.0003	104	70-130	3.09	20	
Chromium [He]	3/2/22 21:26	0.197	0.00200		0.200	0.002	97.6	70-130	3.72	20	
Cobalt [He]	3/2/22 21:26	0.305	0.00200		0.200	0.096	105	70-130	3.47	20	
Lead [He]	3/2/22 21:26	0.198	0.00200		0.200	0.002	97.8	70-130	8.22	20	
Molybdenum [He]	3/2/22 21:26	0.203	0.00200		0.200	0.0004	101	70-130	1.88	20	
Selenium [NG]	3/2/22 21:26	0.234	0.0100		0.200	0.025	105	70-130	1.11	20	
Thallium [He]	3/4/22 14:17	0.221	0.00400		0.200	ND	111	70-130	2.61	20	


Project: Cooperative Energy CCR Annual

PO Box 15369 Hattiesburg MS, 39404-5369 Project Number: SOU2-21-001
Project Manager: Ken Ruckstuhl

Reported: 03/15/2022 11:01

Mercury by EPA 200 Series Methods CVAAS - Quality Control

Analyte	Analyzed	Result	MRL	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Qualifiers
Batch 2B25019 - EPA 245.1 DCN 101	7 Rev 10										
Blank (2B25019-BLK1)											
Mercury	2/28/22 15:09	ND	0.002	mg/L							
LCS (2B25019-BS1)											
Mercury	2/28/22 15:09	0.005	0.002	mg/L	0.00500		102	85-115			
LCS Dup (2B25019-BSD1)											
Mercury	2/28/22 15:09	0.005	0.002	mg/L	0.00500		100	85-115	1.98	20	
Matrix Spike (2B25019-MS1)			Source: 22022	44-01							
Mercury	2/28/22 15:09	0.005	0.002	mg/L	0.00500	0.0005	88.0	70-130			
Matrix Spike Dup (2B25019-MSD1)			Source: 22022	44-01							
Mercury	2/28/22 15:09	0.006	0.002	mg/L	0.00500	0.0005	104	70-130	15.1	20	

Project: Cooperative Energy CCR Annual

PO Box 15369 Hattiesburg MS, 39404-5369 Project Number: SOU2-21-001
Project Manager: Ken Ruckstuhl

Reported: 03/15/2022 11:01

Certified Analyses Included in this Report

Analyte	Certification Code
EPA 200.7 Rev 4.4 in Water	
Aluminum 237.312 [Radial]	C01,C02
Aluminum 394.401 [Radial]	C01,C02
Aluminum 396.152 [Radial]	C01,C02
Antimony 206.833 [Axial]	C01,C02
Arsenic 193.759 [Axial]	C01,C02
Barium 455.403 [Radial]	C01,C02
Barium 493.409 [Radial]	C01,C02
Beryllium 313.042 [Axial]	C01,C02
Boron 249.773 [Radial]	C01,C02
Cadmium 228.802 [Axial]	C01,C02
Calcium 315.887 [Radial]	C01,C02
Chromium 283.563 [Axial]	C01,C02
Cobalt 228.616 [Axial]	C01,C02
Copper 324.754 [Axial]	C01,C02
Iron 259.940 [Axial]	C01,C02
Iron 259.940 [Radial]	C01,C02
Lead 220.353 [Axial]	C01,C02
Lithium 610.362 [Axial]	C01,C02
Magnesium 285.213 [Radial]	C01,C02
Manganese 257.610 [Axial]	C01,C02
Molybdenum 202.030 [Axial]	C01,C02
Nickel 231.604 [Axial]	C01,C02
Potassium 766.490 [Radial]	C01,C02
Phosphorus 178.284 [Axial]	C01,C02
Phosphorus 178.284 [Radial]	C01,C02
Selenium 196.090 [Axial]	C01,C02
Silver 328.068 [Axial]	C01,C02
Sodium 589.592 [Axial]	C01,C02
Sodium 589.592 [Radial]	C01,C02
Strontium 346.446 [Radial]	C01,C02
Strontium 421.552 [Radial]	C01,C02
Thallium 190.856 [Axial]	C01,C02
Tin 189.989 [Axial]	C01,C02
Titanium 334.941 [Axial]	C01,C02
Vanadium 309.311 [Axial]	C01,C02
Zinc 213.856 [Axial]	C01,C02
EPA 200.8 Rev 5.4 in Water	
Aluminum [He]	C01,C02
Antimony [He]	C01,C02
Antimony [HHe]	C01,C02
Antimony [NG]	C01,C02

Environmental Management Services Project: Cooperative Energy CCR Annual PO Box 15369 Project Number: SOU2-21-001

 PO Box 15369
 Project Number: SOU2-21-001
 Reported:

 Hattiesburg MS, 39404-5369
 Project Manager: Ken Ruckstuhl
 03/15/2022 11:01

Arsenic [He]	C01
Arsenic [HHe]	C01,C02
Arsenic [NG]	C01,C02
Barium [He]	C01,C02
Beryllium [He]	C01,C02
Boron [NG]	C01,C02
Cadmium [He]	C01
Cadmium [HHe]	C01,C02
Cadmium [NG]	C01,C02
Chromium [He]	C01,C02
Cobalt [He]	C01,C02
Copper [He]	C01,C02
Copper [NG]	C01,C02
Iron [He]	C01,C02
Lead [He]	C01,C02
Lead [NG]	C01,C02
Manganese [He]	C01,C02
Molybdenum [He]	C01,C02
Nickel [He]	C01,C02
Selenium [He]	C01
Selenium [HHe]	C01,C02
Selenium [NG]	C01,C02
Silver [He]	C01,C02
Silver [NG]	C01,C02
Strontium [He]	C01,C02
Thallium [He]	C01,C02
Vanadium [He]	C01,C02
Zinc [He]	C01,C02
EBA 245 1 Boy 2 0 in Water	

EPA 245.1 Rev 3.0 in Water

Mercury C01,C02

^{**}Only compounds included in this list are associated with accredited analyses**

PO Box 15369

Hattiesburg MS, 39404-5369

Project: Cooperative Energy CCR Annual

Project Number: SOU2-21-001
Project Manager: Ken Ruckstuhl

Reported: 03/15/2022 11:01

Laboratory Accreditations/Certifications

Code	Description	Number	Expires
C01	LA Environmental Lab Accreditation Program	01960	06/30/2022
C02	The NELAC Institute (NELAP)	TNI01397	06/30/2022
C03	Ms Dept of Health (Drinking Water Microbiology)	MS00021	12/31/2022
C04	Ms Dept of Health (Drinking Water Chemistry)	MS00021	12/31/2022
C05	Ms DEQ Lead Firm Certification	PBF-00000028	03/24/2022
C06	MsDEQ Asbestos Inspector : C.D. Bingham	ABI-00001348	02/12/2022
C07	MsDEQ Air Monitor : C.D. Bingham	AM-011572	02/13/2022
C08	MsDEQ Asbestos Inspector: C. W. Meins	ABI-00001821	09/09/2022
C09	MsDEQ Air Monitor: C.W. Meins	AM-011189	02/13/2022
C14	MsDEQ Lead Paint Inspector : C.D. Bingham	PBI-00003690	03/24/2022
C15	MsDEQ Lead Paint Inspector : C.W. Meins	PBI-00001740	03/24/2022

Report Definitions

TNC DET ND NR RPD	Too Numerous To Count Analyte DETECTED Analyte NOT DETECTED at or above the minimum reporting limit Not Reported Relative Percent Difference
ICV CCV SSV LCS MS	Initial Calibration Verification Continuing Calibration Verification Standard Secondary Source Verification Standard Lab Control Spike - Lab matrix prepared with known concentration of analyte/s of interest analyzed by method. Matrix Spike - Sample prepared with known concentration of analyte/s of interest analyzed by method. Matrix Spike Duplicate - Duplicate sample prepared with known concentration of analyte/s of interest analyzed by method.
MRL %REC Batch Matrix Surrogate	Minimum Reporting Limit Percentage Recovery of known concentration added to matrix Group of samples prepared for analysis not to exceed 20 samples. Material containing analyte/s of interest Analyte added to sample to determine extraction efficiency of method.

Environmental Management Services Project: Cooperative Energy CCR Annual

 PO Box 15369
 Project Number: SOU2-21-001
 Reported:

 Hattiesburg MS, 39404-5369
 Project Manager: Ken Ruckstuhl
 03/15/2022 11:01

Analyst Initials Key

<u>FullName</u>	<u>Initials</u>
Camie Bourne	CLB
Charles L Vorhoff	CLV
Sarah E. Tomek	SET
Stella S Kleist	SSK
Teresa Meins	TKM
Tina Tomek	TPT

PO Box 1410, Ocean Springs, MS 39566-1410 (228) 875-6420 FAX (228) 875-6423

www.micromethodslab.com

Chain of Custody Record

Lab ID# MS00021 LELAP ID # 01960 TNI ID # TNI01397

Print Form

00000111

Company Name: EMS	Pr	Project Manager:	anager:		Ken R	uck	Ruckstuhl			Turn A	round	Turn Around Time & Reporting	eporting
S	P	ırchase	Purchase Order #:						×Normal	ur normai i	"All rus	Our normal turn around time is 10 working days *All rush orderPh	vorking days Phone
City: Hattiesburg State: MS Zip: 39402	ū	Email Address :	iress :	ruc	kruckstuhl@env-mgt.)env	-mg	t.com	Next Day*	ay*	request	requests must be	Mail
Phone: 601 544 3674	တ္တ	mpler N	Sampler Name Printed:	inted:	flan Ni	1/en			Other*	3	prior a	prior approved.	Email
Fax: 601 544 0504	Se	mpler N	Sampler Name Signed:	gned:	March	y	./		QC Level: Level 1	Level 1	Lev	Level 2	evel 3
			20	List A	List Analyses Requested	queste	ā			Field Testing	esting		
Project Name: Cooperative Energy CCR LF Annual	_	servat	_			\perp			ID# Field Test	ID# Field Test	Field Te	ID# ID# ID# ID# ID# Field Test Field Test	Matrix:
Project #: SOU2-21-001	ontaine		endix										
Sample Identification Sampling Date/Time	Matrix Code	Grab (SO = Soil
MW-2 2-8-22 1445	W	-	×										L = Liquid
MW-3 88-22 12:45	W L	9	×										A = Air
MW-4 R-7-22 15:15	×	G	×										SL = Sludge
MW-5 2-7-22 14:00	W	9	×										
MW-6 27-22 12:30	W L	6	\times										
MW-10 2772 11:15	×	9	×										Preservation:
BU-1	×	G	×										2= H3PO4
		1											3=NaOH 4=ZnC4H10O6
													S=ZnC4H10O6 & NaOH
Received on Ice V N Thermometer# Co	Cooler#		Recei	ot Tem	Receipt Temp Corrected(°C	<u>-</u>							6=HNO3 7=Na2S2O3
Date & Time By: δ			Sample	e	Blank X C	Cooler_		k:	**All Temps are Corrected Values**	s are Corre	ected Val	ues**	9=NaHSO4
Printed Name		Signature	eri	1	Company	Date		Time	Notes:	#11007	*	20	2.4.8
Relinquished by Alam Nivan	alla	10	31		EMS	2-5	833	00,21		COURT#	# : :: #	26	1.9.0
Received by Received by Received by	5					4			See Work Order:	k Order:			
Relinquished by 1 FCOEX	-			-					Annual /	∖ppendi	x IV - ar	ıtimony, aı	Annual Appendix IV - antimony, arsenic, barium,
Received by SMMM TOMM	MINK	NIK	BY	W	MM	7 3	22/11	8401	berylliun	n, cadmi	um, ch	romium, co	beryllium, cadmium, chromium, cobalt, fluoride,
Relinquished by		C					8		thallium, radium 226/228	, radium	226/22	nolybaent 8	lead, lithium, mercufy, molybdenum, seienium, thallium, radium 226/228
Received by												i	

Physical Address: 6500 Sunplex Drive, Ocean Springs MS 39564

March 14, 2022

Tina Tomek Micro-Methods Lab 6500 Sunplex Drive Ocean Springs, MS 39564

RE: Project: 2202244

Pace Project No.: 30467306

Dear Tina Tomek:

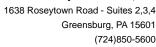
Enclosed are the analytical results for sample(s) received by the laboratory on February 16, 2022. The results relate only to the samples included in this report. Results reported herein conform to the applicable TNI/NELAC Standards and the laboratory's Quality Manual, where applicable, unless otherwise noted in the body of the report.

The test results provided in this final report were generated by each of the following laboratories within the Pace Network:

• Pace Analytical Services - Greensburg

If you have any questions concerning this report, please feel free to contact me.

Sincerely,


David A. Pichette david.pichette@pacelabs.com (724)850-5617 Project Manager

and Politico

Enclosures

cc: Accounts Payable, Micro-Methods Lab

CERTIFICATIONS

Project: 2202244
Pace Project No.: 30467306

Pace Analytical Services Pennsylvania

1638 Roseytown Rd Suites 2,3&4, Greensburg, PA 15601

ANAB DOD-ELAP Rad Accreditation #: L2417

Alabama Certification #: 41590 Arizona Certification #: AZ0734

Arkansas Certification

California Certification #: 04222CA Colorado Certification #: PA01547 Connecticut Certification #: PH-0694

Delaware Certification EPA Region 4 DW Rad

Florida/TNI Certification #: E87683 Georgia Certification #: C040

Guam Certification

Florida: Cert E871149 SEKS WET

Hawaii Certification Idaho Certification Illinois Certification Indiana Certification Iowa Certification #: 391

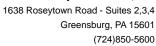
Kansas/TNI Certification #: E-10358 Kentucky Certification #: KY90133 KY WW Permit #: KY0098221 KY WW Permit #: KY0000221

Louisiana DHH/TNI Certification #: LA180012 Louisiana DEQ/TNI Certification #: 4086

Maine Certification #: 2017020 Maryland Certification #: 308

Massachusetts Certification #: M-PA1457 Michigan/PADEP Certification #: 9991 Missouri Certification #: 235
Montana Certification #: Cert0082
Nebraska Certification #: NE-OS-29-14
Nevada Certification #: PA014572018-1
New Hampshire/TNI Certification #: 297617
New Jersey/TNI Certification #: PA051
New Mexico Certification #: PA01457
New York/TNI Certification #: 10888

New York/TNI Certification #: 10888 North Carolina Certification #: 42706 North Dakota Certification #: R-190 Ohio EPA Rad Approval: #41249


Oregon/TNI Certification #: PA200002-010 Pennsylvania/TNI Certification #: 65-00282 Puerto Rico Certification #: PA01457 Rhode Island Certification #: 65-00282

South Dakota Certification
Tennessee Certification #: 02867

Utah/TNI Certification #: PA014572017-9
USDA Soil Permit #: P330-17-00091
Vermont Dept. of Health: ID# VT-0282
Virgin Island/PADEP Certification
Virginia/VELAP Certification #: 460198
Washington Certification #: C868
West Virginia DEP Certification #: 143
West Virginia DHHR Certification #: 9964C

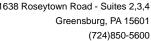
Texas/TNI Certification #: T104704188-17-3

Wisconsin Approve List for Rad Wyoming Certification #: 8TMS-L

SAMPLE SUMMARY

Project: 2202244
Pace Project No.: 30467306

Lab ID	Sample ID	Matrix	Date Collected	Date Received
30467306001	2202244-01	Water	02/08/22 14:45	02/16/22 10:00
30467306002	2202244-02	Water	02/08/22 12:45	02/16/22 10:00
30467306003	2202244-03	Water	02/07/22 15:15	02/16/22 10:00
30467306004	2202244-04	Water	02/07/22 14:00	02/16/22 10:00
30467306005	2202244-05	Water	02/07/22 12:30	02/16/22 10:00
30467306006	2202244-06	Water	02/07/22 11:15	02/16/22 10:00
30467306007	2202244-07	Water	02/07/22 16:00	02/16/22 10:00



SAMPLE ANALYTE COUNT

Project: 2202244 Pace Project No.: 30467306

Lab ID	Sample ID	Method	Analysts	Analytes Reported
30467306001	2202244-01	EPA 903.1	SLC	1
		EPA 904.0	JSM	1
30467306002	2202244-02	EPA 903.1	SLC	1
		EPA 904.0	JSM	1
30467306003	2202244-03	EPA 903.1	SLC	1
		EPA 904.0	JSM	1
30467306004	2202244-04	EPA 903.1	SLC	1
		EPA 904.0	JSM	1
30467306005	2202244-05	EPA 903.1	SLC	1
		EPA 904.0	JSM	1
30467306006	2202244-06	EPA 903.1	SLC	1
		EPA 904.0	JSM	1
30467306007	2202244-07	EPA 903.1	SLC	1
		EPA 904.0	JSM	1

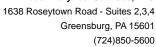
PASI-PA = Pace Analytical Services - Greensburg

ANALYTICAL RESULTS - RADIOCHEMISTRY

Project: 2202244 Pace Project No.: 30467306

Sample: 2202244-01 PWS:	Lab ID: 30467306 Site ID:	001 Collected: 02/08/22 14:45 Sample Type:	Received:	02/16/22 10:00	Matrix: Water	
Parameters	Method	Act ± Unc (MDC) Carr Trac	Units	Analyzed	CAS No.	Qual
	Pace Analytical Serv	ices - Greensburg				
Radium-226		0.359 ± 0.611 (1.08) C:NA T:94%	pCi/L	03/11/22 14:23	3 13982-63-3	
	Pace Analytical Serv	ices - Greensburg				
Radium-228		1.12 ± 0.425 (0.653) C:91% T:90%	pCi/L	03/09/22 11:55	5 15262-20-1	
Sample: 2202244-02 PWS:	Lab ID: 30467306 Site ID:	002 Collected: 02/08/22 12:45 Sample Type:	Received:	02/16/22 10:00	Matrix: Water	
Parameters	Method	Act ± Unc (MDC) Carr Trac	Units	Analyzed	CAS No.	Qual
	Pace Analytical Serv	ices - Greensburg				
Radium-226	EPA 903.1	0.326 ± 0.554 (0.978) C:NA T:95%	pCi/L	03/11/22 14:23	3 13982-63-3	
	Pace Analytical Serv	ices - Greensburg				
Radium-228		1.86 ± 0.523 (0.590) C:95% T:90%	pCi/L	03/09/22 11:55	5 15262-20-1	
Sample: 2202244-03	Lab ID: 30467306	003 Collected: 02/07/22 15:15	Received:	02/16/22 10:00	Matrix: Water	
PWS:	Site ID:	Sample Type:				
Parameters	Method	Act ± Unc (MDC) Carr Trac	Units	Analyzed	CAS No.	Qual
	Pace Analytical Serv	ices - Greensburg				
Radium-226		0.165 ± 0.377 (0.607) C:NA T:92%	pCi/L	03/11/22 14:23	3 13982-63-3	
	Pace Analytical Serv	ices - Greensburg				
Radium-228	EPA 904.0	1.37 ± 0.498 (0.737) C:92% T:78%	pCi/L	03/09/22 11:55	5 15262-20-1	
Sample: 2202244-04	Lab ID: 30467306	004 Collected: 02/07/22 14:00	Received:	02/16/22 10:00	Matrix: Water	
PWS:	Site ID:	Sample Type:				
Parameters	Method	Act ± Unc (MDC) Carr Trac	Units	Analyzed	CAS No.	Qual
	Pace Analytical Serv	ices - Greensburg				
Radium-226		0.269 ± 0.584 (1.08) C:NA T:90%	pCi/L	03/11/22 14:23	3 13982-63-3	
	Pace Analytical Serv	ices - Greensburg				
Radium-228		1.17 ± 0.448 (0.688) C:92% T:86%	pCi/L	03/09/22 11:55	5 15262-20-1	

REPORT OF LABORATORY ANALYSIS


This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, LLC.

ANALYTICAL RESULTS - RADIOCHEMISTRY

Project: 2202244
Pace Project No.: 30467306

Sample: 2202244-05 PWS:	Lab ID: 30467 Site ID:	7306005 Collected: 02/07/22 12:30 Sample Type:	Received:	02/16/22 10:00 Mat	rix: Water	
Parameters	Method	Act ± Unc (MDC) Carr Trac	Units	Analyzed	CAS No.	Qual
	Pace Analytical	Services - Greensburg				
Radium-226	EPA 903.1	0.224 ± 0.440 (0.803) C:NA T:98%	pCi/L	03/11/22 14:40 1	3982-63-3	
	Pace Analytical	Services - Greensburg				
Radium-228	EPA 904.0	1.44 ± 0.473 (0.636) C:90% T:86%	pCi/L	03/09/22 11:55 1	5262-20-1	
Sample: 2202244-06 PWS:	Lab ID: 30467 Site ID:	7306006 Collected: 02/07/22 11:15 Sample Type:	Received:	02/16/22 10:00 Mat	rix: Water	
Parameters	Method	Act ± Unc (MDC) Carr Trac	Units	Analyzed	CAS No.	Qual
	Pace Analytical	Services - Greensburg			,	
Radium-226	EPA 903.1	0.507 ± 0.577 (0.910) C:NA T:87%	pCi/L	03/11/22 14:40 1	3982-63-3	
	Pace Analytical	Services - Greensburg				
Radium-228	EPA 904.0	1.03 ± 0.395 (0.602) C:89% T:92%	pCi/L	03/09/22 11:55 1	5262-20-1	
Sample: 2202244-07	Lab ID: 30467	7306007 Collected: 02/07/22 16:00	Received:	02/16/22 10:00 Mat	rix: Water	
PWS:	Site ID:	Sample Type:				
Parameters	Method	Act ± Unc (MDC) Carr Trac	Units	Analyzed	CAS No.	Qual
	Pace Analytical	Services - Greensburg				
Radium-226	EPA 903.1	0.0826 ± 0.428 (0.889) C:NA T:85%	pCi/L	03/11/22 14:40 1	3982-63-3	
	Pace Analytical	Services - Greensburg				
Radium-228	EPA 904.0	1.76 ± 0.561 (0.747) C:80% T:88%	pCi/L	03/09/22 11:55 1	5262-20-1	

QUALITY CONTROL - RADIOCHEMISTRY

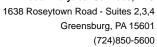
Project: 2202244
Pace Project No.: 30467306

QC Batch: 487439 Analysis Method: EPA 903.1

QC Batch Method: EPA 903.1 Analysis Description: 903.1 Radium-226

Laboratory: Pace Analytical Services - Greensburg

Associated Lab Samples: 30467306001, 30467306002, 30467306003, 30467306004, 30467306005, 30467306006, 30467306007


METHOD BLANK: 2357380 Matrix: Water

Associated Lab Samples: 30467306001, 30467306002, 30467306003, 30467306004, 30467306005, 30467306006, 30467306007

 Parameter
 Act ± Unc (MDC) Carr Trac
 Units
 Analyzed
 Qualifiers

 Radium-226
 -0.0709 ± 0.324 (0.763) C:NA T:96%
 pCi/L
 03/11/22 14:01

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

QUALITY CONTROL - RADIOCHEMISTRY

Project: 2202244
Pace Project No.: 30467306

QC Batch: 487441 Analysis Method: EPA 904.0

QC Batch Method: EPA 904.0 Analysis Description: 904.0 Radium 228

Laboratory: Pace Analytical Services - Greensburg

Associated Lab Samples: 30467306001, 30467306002, 30467306003, 30467306004, 30467306005, 30467306006, 30467306007

METHOD BLANK: 2357385 Matrix: Water

Associated Lab Samples: 30467306001, 30467306002, 30467306003, 30467306004, 30467306005, 30467306006, 30467306007

 Parameter
 Act ± Unc (MDC) Carr Trac
 Units
 Analyzed
 Qualifiers

 Radium-228
 0.805 ± 0.361 (0.590) C:88% T:87%
 pCi/L
 03/09/22 11:54

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

QUALIFIERS

Project: 2202244
Pace Project No.: 30467306

DEFINITIONS

DF - Dilution Factor, if reported, represents the factor applied to the reported data due to dilution of the sample aliquot.

ND - Not Detected at or above adjusted reporting limit.

TNTC - Too Numerous To Count

J - Estimated concentration above the adjusted method detection limit and below the adjusted reporting limit.

MDL - Adjusted Method Detection Limit.

PQL - Practical Quantitation Limit.

RL - Reporting Limit - The lowest concentration value that meets project requirements for quantitative data with known precision and bias for a specific analyte in a specific matrix.

S - Surrogate

1,2-Diphenylhydrazine decomposes to and cannot be separated from Azobenzene using Method 8270. The result for each analyte is a combined concentration.

Consistent with EPA guidelines, unrounded data are displayed and have been used to calculate % recovery and RPD values.

LCS(D) - Laboratory Control Sample (Duplicate)

MS(D) - Matrix Spike (Duplicate)

DUP - Sample Duplicate

RPD - Relative Percent Difference

NC - Not Calculable.

SG - Silica Gel - Clean-Up

U - Indicates the compound was analyzed for, but not detected.

N-Nitrosodiphenylamine decomposes and cannot be separated from Diphenylamine using Method 8270. The result reported for each analyte is a combined concentration.

Reported results are not rounded until the final step prior to reporting. Therefore, calculated parameters that are typically reported as "Total" may vary slightly from the sum of the reported component parameters.

Act - Activity

Date: 03/14/2022 09:36 PM

Unc - Uncertainty: For Safe Drinking Water Act (SDWA) analyses, the reported Unc. Is the calculated Count Uncertainty (95% confidence interval) using a coverage factor of 1.96. For all other matrices (non-SDWA), the reported Unc. is the calculated Expanded Uncertainty (aka Combined Standard Uncertainty, CSU), reported at the 95% confidence interval using a coverage factor of 1.96.

Gamma Spec: The Unc. reported for all gamma-spectroscopy analyses (EPA 901.1), is the calculated Expanded Uncertainty (CSU) at the 95.4% confidence interval, using a coverage factor of 2.0.

(MDC) - Minimum Detectable Concentration

Trac - Tracer Recovery (%)

Carr - Carrier Recovery (%)

Pace Analytical is TNI accredited. Contact your Pace PM for the current list of accredited analytes.

TNI - The NELAC Institute.

SUBCONTRACT ORDER

T-EVE	ORATORY	**************************************			ORDER
Sending Laboratory:		Sub	contracted Lab	oratory:	
Micro-Methods Laboratory, Inc. 6500 Sunplex Drive Ocean Springs, MS 39564 Phone: 228.875.6420 Fax: 228.875.6423		1 (Pace Analytical-7 1638 Roseytown R Greensburg, PA 1 Phone: (724) 850- Fax: -	5601	3, 4
Project Manager: Teresa Meins			0#:304 		6
Work Order: 2202244		No.			
Analysis	Due E	xpires	Comments		
Sample ID: 2202244-01 <i>Water</i> 5	Sampled: 02/08/2022	2 14:45	Sample Name:	MW-2	w
Radium, Total 226 & 228 by EPA 903.1 & 90 Containers Supplied: 1000mL Plastic w/HNO3 (A) 1000mL Plastic w	, ,	/2022 14:45	5		
	Sampled: 02/08/2022	2 12:45	Sample Name:	MW-3	ana
Radium, Total 226 & 228 by EPA 903.1 & 90	02/17/2022 03/08/	2022 12:45	5		
Containers Supplied: 1000mL Plastic w/HNO3 (A) 1000mL Plastic v	w/HNO3 (B)				
Sample ID: 2202244-03 Water 3	Sampled: 02/07/2022	2 15:15	Sample Name:	MW-4	(4) 3
Radium,Total 226 & 228 by EPA 903.1 & 90	02/17/2022 03/07/	2022 15:15	5		The second secon
Containers Supplied: 1000mL Plastic w/HNO3 (A) 1000mL Plastic v	w/HNO3 (B) 1000mL Plast	ic w/HNO3 (0	5) 1000mL Plastic w/	HNO3 (H)	
Sample ID: 2202244-04 Water 3	Sampled: 02/07/2022	2 14:00	Sample Name:	MW-5	WY
Radium,Total 226 & 228 by EPA 903.1 & 90	02/17/2022 03/07/	2022 14:00)		
Containers Supplied: 1000mL Plastic w/HNO3 (A) 1000mL Plastic v	w/HNO3 (B)				
Sample ID: 2202244-05 Water 3	Sampled: 02/07/2022	2 12:30	Sample Name:	MW-6	ως <u>ς</u>
Radium,Total 226 & 228 by EPA 903.1 & 90	02/17/2022 03/07/	2022 12:30)		
Enah Jomeh 410)	1220 1630	***************************************	WS	2/10	122 ° 1630
Released By Released By	Date 2/10/2010/00	B	ved By LICA C ved By	2/16	Date Date
Released By	Date	Recei	ved By		Date
Released By	Date	Recei	ved By		Date

Date

Released By

Received By

Date

SUBCONTRACT ORDER

(Continued) $\overset{\leftarrow}{4}$ $\overset{=}{3}$ 0 4 6 7 3 0 6

Work Order: 2202244 (Continued)

Analysis	Due	Expires	Comments	
Containers Supplied: 1000mL Plastic w/HNO3 (A) 1000mL Plastic	w/HNO3 (B)			
Sample ID: 2202244-06 Water	Sampled: 02/0	7/2022 11:15	Sample Name: MW-10	W6
Radium, Total 226 & 228 by EPA 903.1 & 9	00 02/17/2022	03/07/2022 11:1	5	
Containers Supplied: 1000mL Plastic w/HNO3 (A) 1000mL Plastic	: w/HNO3 (B)			
Sample ID: 2202244-07 Water	Sampled: 02/0	7/2022 16:00	Sample Name: BD-1	W7
Radium, Total 226 & 228 by EPA 903.1 & 9	00 02/17/2022	03/07/2022 16:0	0	
Containers Supplied: 1000mL Plastic w/HNO3 (A) 1000mL Plastic	: w/HNO3 (B)			

Smahlomeh 4	10/22 0 1630	IMS	2/10/220 1630
Released By	Date	Received By	Date
WS	2/10/22/100	Rebecca Ce	2/16/22100
Released By	Date	Received By	Date
Released By	Date	Received By	Date
Released By	Date	Received By	Date
Released By	Date	Received By	Date

Pittsburgh Lab Sample Condi	ion Upon Receipt	
Face Analytical Client Name:	Micro-Nethods Labroject ## 30467	306
Courier: Fed Ex OUPS USPS Clier Tracking #: 123530630531694		-
Custody Seal on Cooler/Box Present: yes	no Seals intact: yes no	
Thermometer Used	Type of Ice: Wet Blue (None)	
Cooler Temperature Observed Temp	°C Correction Factor: °C Final Temp: °C	
Temp should be above freezing to 6°C		
NAMED TO SERVICE THE SERVICE STATES AND SERVICE STATES.	pH paper Lot# Date and Initials of person examining contents:	
Comments:	Yes No N/A HCVQSD1 Contents: 2705/61/ PME	
Chain of Custody Present:	X	
Chain of Custody Filled Out:	2.	
Chain of Custody Relinquished:	X 3.	_
Sampler Name & Signature on COC:	X 4. NN name or signature	
Sample Labels match COC:	5.	
-Includes date/time/ID Matrix:	<u> </u>	
Samples Arrived within Hold Time:	6.	
Short Hold Time Analysis (<72hr remaining):	7.	
Rush Turn Around Time Requested:	8.	
Sufficient Volume:	9.	
Correct Containers Used:	10.	
-Pace Containers Used:	X	
Containers Intact:	X 11.	
Orthophosphate field filtered	12.	
Hex Cr Aqueous sample field filtered	13.	
Organic Samples checked for dechlorination:	14.	
Filtered volume received for Dissolved tests	X 15.	_
All containers have been checked for preservation. exceptions: VOA, coliform, TOC, O&G, Phenolics	$\frac{\chi}{Radon}$ 16. pH c	
Non-aqueous matrix	1	
All containers meet method preservation requirements.	Initial when Date/time of preservation	
·	Lot # of added preservative	
Headspace in VOA Vials (>6mm):	17.	7
Trip Blank Present:	18.	
Trip Blank Custody Seals Present		
Rad Samples Screened < 0.5 mrem/hr	Initial when completed: A Date: A 37 70 Survey Meter SN: 151-3	7
Client Notification/ Resolution:	/	
Person Contacted:	Date/Time: Contacted By:	
Comments/ Resolution:		
		-
		_

 \square A check in this box indicates that additional information has been stored in ereports.

Note: Whenever there is a discrepancy affecting North Carolina compliance samples, a copy of this form will be sent to the North Carolina DEHNR Certification Office (i.e. out of hold, incorrect preservative, out of temp, incorrect containers)

*PM review is documented electronically in LIMS. When the Project Manager closes the SRF Review schedule in LIMS. The review is in the Status section of the Workorder Edit Screen.

Mailing Address: PO Box 1410 Ocean Springs, MS 39566-1410

DOCUMENT CHANGE NOTICE

6500 Sunplex Drive Ocean Springs, MS 39564 228.875.6420 Phone 228.875.6423 Fax

Revised Report

June 23, 2022

Ken Ruckstuhl Work Order #: 2204531

Environmental Management Services PO Box 15369

Hattiesburg, MS 39404-5369

RE: Cooperative Energy CCR Semiannual

Purchase Order #

Enclosed is the <u>revised</u> report for samples received by the laboratory on 04/27/2022 13:50. This report supercedes any previous version of the above noted work order. If you have any questions concerning this report, please feel free to contact the office.

Sincerely,

Mitch Spicer

Lab Director

DISCLAIMER

The results only relate to the items or the sample and/or samples received by the laboratory. This report shall not be reproduced except in full, without the approval of the laboratory. All NELAP certified test methods performed meet the requirements of NELAC 2009 Standards. Any variances and/or deviations specific to this analytical report are referenced in the lab report using qualifiers and detailed explanations found in the case narrative.

Environmental Management Services

PO Box 15369

Hattiesburg MS, 39404-5369

Project: Cooperative Energy CCR Semiannual

Project Number: [none]

Project Manager: Ken Ruckstuhl

Reported: 06/23/2022 16:00

ANALYTICAL REPORT FOR SAMPLES

Sample ID	Laboratory ID	Matrix	Date/Time Sampled	Sampled by	Date/Time Received
BD-1	2204531-01	Water	04/27/2022 09:00	Alan Niven	04/27/2022 13:50
MW-2	2204531-02	Water	04/27/2022 10:15	Alan Niven	04/27/2022 13:50
MW-3	2204531-03	Water	04/27/2022 11:30	Alan Niven	04/27/2022 13:50
MW-4	2204531-04	Water	04/26/2022 15:15	Alan Niven	04/27/2022 13:50
MW-5	2204531-05	Water	04/26/2022 13:20	Alan Niven	04/27/2022 13:50
MW-6	2204531-06	Water	04/26/2022 12:15	Alan Niven	04/27/2022 13:50
MW-10	2204531-07	Water	04/26/2022 10:45	Alan Niven	04/27/2022 13:50

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Micro-Methods Laboratory, Inc.

Environmental Management Services Project: Cooperative Energy CCR Semiannual

PO Box 15369 Project Number: [none]

Reported: 06/23/2022 16:00 Hattiesburg MS, 39404-5369 Project Manager: Ken Ruckstuhl

Sample Receipt Conditions

Date/Time Received: 4/27/2022 1:50:00PM Shipped by: Client Delivery

Received by: Submitted by: Sarah E. Tomek Alan Niven

Sarah E. Tomek Date/Time Logged: 4/27/2022 4:14:00PM Logged by:

Receipt Temperature: 0.3 °C Cooler ID: #1126

Received on Ice but Not Frozen Yes Cooler Custody Seals Present No Containers Intact Yes No Ice, Short Trip No COC/Labels Agree Yes **Obvious Contamination** No Labels Complete Yes Rush to meet HT No COC Complete Received within HT Yes Yes Volatile Vial Headspace >6mm Proper Containers for Analysis Yes No Field Sheet/Instructions Included No Correct Preservation Yes Samples Rejected/Documented in Log No Adequate Sample for Analysis Yes Temp Taken From Temp Blank Yes Sample Custody Seals Present No Samples Missing from COC/Cooler No No

Temp Taken From Sample Container Temp Taken From Cooler No COC meets acceptance criteria Yes

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Micro-Methods Laboratory, Inc.

Environmental Management Services Project: Cooperative Energy CCR Semiannual

 PO Box 15369
 Project Number: [none]
 Reported:

 Hattiesburg MS, 39404-5369
 Project Manager: Ken Ruckstuhl
 06/23/2022 16:00

Cooler Custody Seals Present	No	Received on Ice but Not Frozen	Yes
Containers Intact	Yes	No Ice, Short Trip	No
COC/Labels Agree	Yes	Obvious Contamination	No
Labels Complete	Yes	Rush to meet HT	No
COC Complete	Yes	Received within HT	Yes
Volatile Vial Headspace >6mm	No	Proper Containers for Analysis	Yes
Field Sheet/Instructions Included	No	Correct Preservation	Yes
Samples Rejected/Documented in Log	No	Adequate Sample for Analysis	Yes
Temp Taken From Temp Blank	Yes	Sample Custody Seals Present	No
Temp Taken From Sample Container	No	Samples Missing from COC/Cooler	No
Temp Taken From Cooler	No	•	
COC meets acceptance criteria	Yes		

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Micro-Methods Laboratory, Inc.

Environmental Management Services

Project: Cooperative Energy CCR Semiannual Project Number: [none]

Hattiesburg MS, 39404-5369

PO Box 15369

Project Manager: Ken Ruckstuhl

Reported: 06/23/2022 16:00

CASE NARRATIVE SUMMARY

All reported results are within Micro-Methods Laboratory, Inc.defined laboratory quality control objectives unless detailed in narrative summary or identified as qualifications. NOTE: All results listed on this report are calculated on a wet weight basis (as received by the laboratory) unless otherwise noted in the analysis qualification sections.

Summary Comments:

See attached results from Sub-Contract Laboratory

As per client, L. Marcella, request the metals list was revised. 6/23/22 TKM

Qualification: No Data Qualification

Analyte & Samples(s) Qualified: None

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Micro-Methods Laboratory, Inc.

Environmental Management Services

Hattiesburg MS, 39404-5369

PO Box 15369

Project: Cooperative Energy CCR Semiannual Project Number: [none]

Project Manager: Ken Ruckstuhl

Reported: 06/23/2022 16:00

BD-1

2204531-01 (Water)

Analyte	Result	MRL	Units	Dil	Batch A	nalyst	Date Time Prepared	Date Time Analyzed	Method	Notes	
Classical Chemistry Parameters											
Chloride	118	5.00	mg/L	10.0	2D28018	DLW	04/28/2022 13:04	04/28/2022 21:16	SM 4110B 2011		
Sulfate as SO4	2220	1000	"	200.0	"	DLW		04/28/2022 21:45	n		
Fluoride	ND	0.50	"	1.0	2E02025	SSK	05/02/2022 08:45	05/02/2022 11:35	SM 4500-F C 2011		
Total Dissolved Solids	2730	2	"	"	2D28011	DLW	04/28/2022 12:30	04/29/2022 00:00	SM 2540 C-2015		
Metals by EPA 200 Series Method	s ICP-AES										
Barium 455.403 [Radial]	0.035	0.010	mg/L	1.0	2D29022	CLV	04/29/2022 09:00	05/11/2022 17:05	EPA 200.7 Rev 4.4		
Boron 249.773 [Radial]	6.43	0.050	"	"	"	CLV		05/06/2022 12:23	n		
Calcium 315.887 [Radial]	459	1.00	"	20.0	"	CLV		05/10/2022 15:13	"		
Lithium 610.362 [Axial]	0.150	0.040	"	1.0	"	CLV		05/11/2022 17:05	"		
Metals by EPA 200 Series Method	s ICP-MS [Analysis N	lode]								
Beryllium [He]	ND	0.00400	mg/L	1.0	2D29020	CLV		05/04/2022 19:29	EPA 200.8 Rev 5.4		
Cobalt [He]	0.0242	0.00100	"	"	"	CLV			"		
Lead [He]	0.00242	0.00100	"	"	"	CLV					
Molybdenum [He]	ND	0.00500	"	"	"	CLV			"		

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Micro-Methods Laboratory, Inc.

Environmental Management Services

PO Box 15369

Hattiesburg MS, 39404-5369

Project: Cooperative Energy CCR Semiannual

Project Number: [none]

Project Manager: Ken Ruckstuhl

Reported: 06/23/2022 16:00

MW-2

2204531-02 (Water)

Analyte	Result	MRL	Units	Dil	Batch Ar	nalyst	Date Time Prepared	Date Time Analyzed	Method	Notes
Classical Chemistry Parameters	_	_								
Chloride	82.6	5.00	mg/L	10.0	2D28018	DLW	04/28/2022 13:04	04/28/2022 20:18	SM 4110B 2011	
Sulfate as SO4	365	250	"	50.0	"	DLW		04/28/2022 20:47	"	
Fluoride	0.57	0.50	"	1.0	2E02025	SSK	05/02/2022 08:45	05/02/2022 11:35	SM 4500-F C 2011	
Total Dissolved Solids	649	1	"	"	2D28011	DLW	04/28/2022 12:30	04/29/2022 00:00	SM 2540 C-2015	
Metals by EPA 200 Series Method	ds ICP-AES									
Barium 455.403 [Radial]	0.023	0.010	mg/L	1.0	2D29022	CLV	04/29/2022 09:00	05/11/2022 17:09	EPA 200.7 Rev 4.4	
Boron 249.773 [Radial]	0.934	0.050	"	"	"	CLV		05/06/2022 12:27	"	
Calcium 315.887 [Radial]	74.0	0.500	"	10.0	"	CLV	"	05/10/2022 15:17	"	
Lithium 610.362 [Axial]	ND	0.040	"	1.0	"	CLV	"	05/11/2022 17:09	"	
Metals by EPA 200 Series Method	ds ICP-MS [Analysis N	lode]							
Beryllium [He]	ND	0.00400	mg/L	1.0	2D29020	CLV		05/04/2022 19:35	EPA 200.8 Rev 5.4	
Cobalt [He]	0.0898	0.00100	"	"	"	CLV			"	
Lead [He]	0.00182	0.00100	"	"	"	CLV			"	
Molybdenum [He]	ND	0.00500	u	"	"	CLV	"		"	

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Micro-Methods Laboratory, Inc.

Environmental Management Services

PO Box 15369

Hattiesburg MS, 39404-5369

Project: Cooperative Energy CCR Semiannual

Project Number: [none]

Project Manager: Ken Ruckstuhl

Reported: 06/23/2022 16:00

MW-3

2204531-03 (Water)

Analyte	Result	MRL	Units	Dil	Batch A	nalyst	Date Time Prepared	Date Time Analyzed	Method	Notes
Classical Chemistry Parameters										
Chloride	113	5.00	mg/L	10.0	2D28018	DLW	04/28/2022 13:04	04/28/2022 18:51	SM 4110B 2011	
Sulfate as SO4	1920	1000	"	200.0	"	DLW		04/28/2022 19:20	"	
Fluoride	ND	0.50	"	1.0	2E02025	SSK	05/02/2022 08:45	05/02/2022 11:35	SM 4500-F C 2011	
Total Dissolved Solids	2762	2	"	"	2D28011	DLW	04/28/2022 12:30	04/29/2022 00:00	SM 2540 C-2015	
Metals by EPA 200 Series Method	s ICP-AES									
Barium 455.403 [Radial]	0.032	0.010	mg/L	1.0	2D29022	CLV	04/29/2022 09:00	05/11/2022 17:13	EPA 200.7 Rev 4.4	
Boron 249.773 [Radial]	5.77	0.050	"	"	"	CLV		05/06/2022 12:31	"	
Calcium 315.887 [Radial]	464	1.00	"	20.0	"	CLV		05/10/2022 15:20	"	
Lithium 610.362 [Axial]	0.258	0.040	u	1.0	"	CLV		05/11/2022 17:13	"	
Metals by EPA 200 Series Method	s ICP-MS [Analysis N	lode]							
Beryllium [He]	ND	0.00400	mg/L	1.0	2D29020	CLV		05/04/2022 19:41	EPA 200.8 Rev 5.4	
Cobalt [He]	0.0249	0.00100	"	"	"	CLV		"		
Lead [He]	0.00289	0.00100	"	"	"	CLV				
Molybdenum [He]	ND	0.00500	"	"	"	CLV			п	

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Micro-Methods Laboratory, Inc.

Environmental Management Services

PO Box 15369

Hattiesburg MS, 39404-5369

Project: Cooperative Energy CCR Semiannual

Project Number: [none]

Project Manager: Ken Ruckstuhl

Reported: 06/23/2022 16:00

MW-4

2204531-04 (Water)

Analyte	Result	MRL	Units	Dil	Batch A	nalyst	Date Time Prepared	Date Time Analyzed	Method	Notes
Classical Chemistry Parameters										
Chloride	124	5.00	mg/L	10.0	2D28018	DLW	04/28/2022 13:04	04/28/2022 17:53	SM 4110B 2011	
Sulfate as SO4	1850	1000	"	200.0	"	DLW		04/28/2022 18:22	"	
Fluoride	ND	0.50	"	1.0	2E02025	SSK	05/02/2022 08:45	05/02/2022 11:35	SM 4500-F C 2011	
Total Dissolved Solids	2788	2	"	"	2D28011	DLW	04/28/2022 12:30	04/29/2022 00:00	SM 2540 C-2015	
Metals by EPA 200 Series Method	s ICP-AES									
Barium 455.403 [Radial]	0.028	0.010	mg/L	1.0	2D29022	CLV	04/29/2022 09:00	05/11/2022 17:16	EPA 200.7 Rev 4.4	
Boron 249.773 [Radial]	8.32	0.050	u	"	"	CLV		05/06/2022 12:34	"	
Calcium 315.887 [Radial]	433	1.00	"	20.0	"	CLV		05/10/2022 15:24	"	
Lithium 610.362 [Axial]	0.391	0.040	"	1.0	"	CLV		05/11/2022 17:16	"	
Metals by EPA 200 Series Method	s ICP-MS [Analysis N	lode]							
Beryllium [He]	ND	0.00400	mg/L	1.0	2D29020	CLV		05/04/2022 19:47	EPA 200.8 Rev 5.4	
Cobalt [He]	0.0462	0.00100	"	"	"	CLV			"	
Lead [He]	0.00119	0.00100	"	"	"	CLV			"	
Molybdenum [He]	ND	0.00500	u	"	"	CLV	•		"	

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Micro-Methods Laboratory, Inc.

Environmental Management Services

PO Box 15369

Hattiesburg MS, 39404-5369

Project: Cooperative Energy CCR Semiannual

Project Number: [none]

Project Manager: Ken Ruckstuhl

Reported: 06/23/2022 16:00

MW-5

2204531-05 (Water)

				• • • • • • • • • • • • • • • • • • • 						
Analyte	Result	MRL	Units	Dil	Batch Ai	nalyst	Date Time Prepared	Date Time Analyzed	Method	Notes
Classical Chemistry Parameters							<u> </u>	<u> </u>		
Chloride	177	5.00	mg/L	10.0	2D28018	DLW	04/28/2022 13:04	04/28/2022 16:56	SM 4110B 2011	
Sulfate as SO4	1760	1000	"	200.0	"	DLW		04/28/2022 17:24	"	
Fluoride	ND	0.50	"	1.0	2E02025	SSK	05/02/2022 08:45	05/02/2022 11:35	SM 4500-F C 2011	
Total Dissolved Solids	3417	3	"	"	2D28011	DLW	04/28/2022 12:30	04/29/2022 00:00	SM 2540 C-2015	
Metals by EPA 200 Series Method	s ICP-AES									
Barium 455.403 [Radial]	0.050	0.010	mg/L	1.0	2D29022	CLV	04/29/2022 09:00	05/11/2022 17:20	EPA 200.7 Rev 4.4	
Boron 249.773 [Radial]	12.4	0.100	"	2.0	"	CLV		05/06/2022 14:49	"	
Calcium 315.887 [Radial]	617	1.00	"	20.0	"	CLV	"	05/10/2022 15:27	"	
Lithium 610.362 [Axial]	2.83	0.040	"	1.0	"	CLV		05/11/2022 17:20	"	
Metals by EPA 200 Series Method	s ICP-MS [Analysis N	lode]							
Beryllium [He]	ND	0.00400	mg/L	1.0	2D29020	CLV		05/04/2022 19:53	EPA 200.8 Rev 5.4	
Cobalt [He]	0.0143	0.00100	"	"	"	CLV		"	"	
Lead [He]	ND	0.00100	"	"	"	CLV			"	
Molybdenum [He]	1.95	0.00500	"	5.0	"	CLB		05/16/2022 11:54	"	

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Micro-Methods Laboratory, Inc.

Environmental Management Services

PO Box 15369

Hattiesburg MS, 39404-5369

Project: Cooperative Energy CCR Semiannual

Project Number: [none]

Project Manager: Ken Ruckstuhl

Reported: 06/23/2022 16:00

MW-6

2204531-06 (Water)

Analyte	Result	MRL	Units	Dil	Batch A	ınalyst	Date Time Prepared	Date Time Analyzed	Method	Notes
Classical Chemistry Parameters	5									
Chloride	6.61	0.500	mg/L	1.0	2D28018	DLW	04/28/2022 13:04	04/28/2022 13:04	SM 4110B 2011	
Sulfate as SO4	10.3	5.00	"	"	"	DLW			"	
Fluoride	ND	0.50	"	"	2E02025	SSK	05/02/2022 08:45	05/02/2022 11:35	SM 4500-F C 2011	
Total Dissolved Solids	62	1	"	"	2D28011	DLW	04/28/2022 12:30	04/29/2022 00:00	SM 2540 C-2015	
Metals by EPA 200 Series Metho	ds ICP-AES									
Barium 455.403 [Radial]	0.112	0.010	mg/L	1.0	2D29022	CLV	04/29/2022 09:00	05/11/2022 17:24	EPA 200.7 Rev 4.4	
Boron 249.773 [Radial]	0.053	0.050	"	"	"	CLV	*	05/06/2022 12:42	"	
Calcium 315.887 [Radial]	2.40	0.050	"	"		CLV		05/10/2022 15:31	"	
Lithium 610.362 [Axial]	ND	0.040	"	"		CLV		05/11/2022 17:24	"	
Metals by EPA 200 Series Metho	ds ICP-MS [Analysis N	lode]							
Beryllium [He]	ND	0.00400	mg/L	1.0	2D29020	CLV		05/04/2022 19:59	EPA 200.8 Rev 5.4	
Cobalt [He]	0.00165	0.00100	"	"	"	CLV			"	
Lead [He]	ND	0.00100	"	"	"	CLV			"	
Molybdenum [He]	0.00579	0.00500	"	"	"	CLV			"	

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Micro-Methods Laboratory, Inc.

Environmental Management Services

PO Box 15369

Hattiesburg MS, 39404-5369

Project: Cooperative Energy CCR Semiannual

Project Number: [none]

Project Manager: Ken Ruckstuhl

Reported: 06/23/2022 16:00

MW-10

2204531-07 (Water)

Analyta	Result	MRL	Units	Dil	Batch Ar	nalyst	Date Time Prepared	Date Time Analyzed	Method	Notes
Analyte	Result	IVITL	Ullis	ווט	Daton Ai	lalyst	Trepared	7 tildiy2cu	wethod	Notes
Classical Chemistry Parameters										
Chloride	188	5.00	mg/L	10.0	2D28018	DLW	04/28/2022 13:04	04/28/2022 15:00	SM 4110B 2011	
Sulfate as SO4	731	250	"	50.0	"	DLW	"	04/28/2022 15:29	II	
Fluoride	0.65	0.50	"	1.0	2E02025	SSK	05/02/2022 08:45	05/02/2022 11:35	SM 4500-F C 2011	
Total Dissolved Solids	1114	1	"	"	2D28011	DLW	04/28/2022 12:30	04/29/2022 00:00	SM 2540 C-2015	
Metals by EPA 200 Series Method	s ICP-AES									
Barium 455.403 [Radial]	0.025	0.010	mg/L	1.0	2D29022	CLV	04/29/2022 09:00	05/12/2022 11:37	EPA 200.7 Rev 4.4	
Boron 249.773 [Radial]	5.42	0.050	"	"	"	CLV		05/06/2022 12:45	n	
Calcium 315.887 [Radial]	101	0.500	"	10.0	"	CLV	"	05/10/2022 15:35	"	
Lithium 610.362 [Axial]	0.429	0.040	"	1.0	"	CLV		05/12/2022 11:37	"	
Metals by EPA 200 Series Method	s ICP-MS [Analysis N	lode]							
Beryllium [He]	0.00754	0.00400	mg/L	1.0	2D29020	CLV		05/04/2022 20:05	EPA 200.8 Rev 5.4	
Cobalt [He]	0.123	0.00100	"	"	"	CLV			"	
Lead [He]	0.00290	0.00100	"	"	II .	CLV			"	
Molybdenum [He]	ND	0.00500	"	"	"	CLV		"	"	

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Micro-Methods Laboratory, Inc.

Environmental Management Services

PO Box 15369

Hattiesburg MS, 39404-5369

Project: Cooperative Energy CCR Semiannual

Project Number: [none]

Project Manager: Ken Ruckstuhl

Reported: 06/23/2022 16:00

Classical Chemistry Parameters - Quality Control

Analyte	Analyzed	Result	MRL	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Qualifiers
Batch 2D28011 - Default Prep Ger	nChem										
Blank (2D28011-BLK1)											
Total Dissolved Solids	4/29/22 0:00	ND	1	mg/L							
LCS (2D28011-BS1)											
Total Dissolved Solids	4/29/22 0:00	124	1	mg/L	150		82.7	65-105			
LCS Dup (2D28011-BSD1)											
Total Dissolved Solids	4/29/22 0:00	127	1	mg/L	150		84.7	65-105	2.39	15	
Duplicate (2D28011-DUP1)			Source: 22045	525-01							
Total Dissolved Solids	4/29/22 0:00	1634	1	mg/L		1622			0.737	10	
Duplicate (2D28011-DUP2)			Source: 22045	531-06							
Total Dissolved Solids	4/29/22 0:00	58	1	mg/L		62			6.67	10	
Batch 2D28018 - Default Prep Ger	nChem										
Blank (2D28018-BLK1)											
Chloride	4/28/22 10:40	ND	0.500	mg/L							
Sulfate as SO4	4/28/22 10:40	ND	5.00								
LCS (2D28018-BS1)											
Chloride	4/28/22 9:42	9.79	0.500	mg/L	10.0		97.9	86.3-109			
Sulfate as SO4	4/28/22 9:42	9.65	5.00		10.0		96.5	88-108			
LCS Dup (2D28018-BSD1)											
Chloride	4/28/22 10:11	9.82	0.500	mg/L	10.0		98.2	86.3-109	0.296	20	
Sulfate as SO4	4/28/22 10:11	9.62	5.00		10.0		96.2	88-108	0.291	20	

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Micro-Methods Laboratory, Inc.

Environmental Management Services

PO Box 15369

Hattiesburg MS, 39404-5369

Project: Cooperative Energy CCR Semiannual

Project Number: [none]

Project Manager: Ken Ruckstuhl

Reported: 06/23/2022 16:00

Classical Chemistry Parameters - Quality Control

Analyte	Analyzed	Result	MRL	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Qualifiers
Batch 2D28018 - Default Prep Gent	Chem			_	_	_	_	_	_	_	_
Duplicate (2D28018-DUP1)			Source: 22045	31-06							
Chloride	4/28/22 13:33	6.58	0.500	mg/L		6.61			0.440	20	
Sulfate as SO4	4/28/22 13:33	10.7	5.00			10.3			3.22	20	
Matrix Spike (2D28018-MS1)			Source: 22045	31-06							
Chloride	4/28/22 14:02	18.1	0.500	mg/L	12.0	6.61	95.6	76.2-122			
Sulfate as SO4	4/28/22 14:02	22.6	5.00		12.0	10.3	102	74.1-129			
Matrix Spike Dup (2D28018-MSD1)			Source: 22045	31-06							
Chloride	4/28/22 14:31	18.5	0.500	mg/L	12.0	6.61	99.0	76.2-122	2.25	20	
Sulfate as SO4	4/28/22 14:31	23.0	5.00		12.0	10.3	105	74.1-129	1.42	20	
Batch 2E02025 - Default Prep Gend Blank (2E02025-BLK1)											
Fluoride	5/2/22 11:17	ND	0.50	mg/L							
LCS (2E02025-BS1)											
Fluoride	5/2/22 11:17	2.04	0.50	mg/L	2.00		102	83.3-107			
LCS Dup (2E02025-BSD1)											
Fluoride	5/2/22 11:17	2.13	0.50	mg/L	2.00		107	83.3-107	4.32	30	
Duplicate (2E02025-DUP1)			Source: 22045	31-07							
Fluoride	5/2/22 11:35	0.67	0.50	mg/L		0.65			3.04	20	
Matrix Spike (2E02025-MS1)			Source: 22045	31-07							
Fluoride	5/2/22 11:35	3.19	0.50	mg/L	3.00	0.65	84.7	79.3-113			

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Micro-Methods Laboratory, Inc.

Environmental Management Services

PO Box 15369

Hattiesburg MS, 39404-5369

Project: Cooperative Energy CCR Semiannual

Project Number: [none]

Project Manager: Ken Ruckstuhl

Reported: 06/23/2022 16:00

Classical Chemistry Parameters - Quality Control

Analyte	Analyzed	Result	MRL	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Qualifiers
Batch 2E02025 - Default Prep	GenChem										
Matrix Spike Dup (2E02025-MS	Source: 22045	31-07									
Fluoride	5/2/22 11:35	3.17	0.50	mg/L	3.00	0.65	84.1	79.3-113	0.629	30	

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Micro-Methods Laboratory, Inc.

Environmental Management Services

PO Box 15369

Hattiesburg MS, 39404-5369

Project: Cooperative Energy CCR Semiannual

Project Number: [none]

Project Manager: Ken Ruckstuhl

Reported: 06/23/2022 16:00

Metals by EPA 200 Series Methods ICP-AES - Quality Control

Analyte	Analyzed	Result	MRL	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Qualifiers
Batch 2D29022 - EPA 200.2 DCN 10	17 Rev 10										
Blank (2D29022-BLK1)											
Barium 455.403 [Radial]	5/11/22 16:36	ND	0.010	mg/L							
Barium 493.409 [Radial]	5/6/22 11:42	ND	0.010								
Boron 249.773 [Radial]	5/6/22 11:42	ND	0.050								
Calcium 315.887 [Radial]	5/6/22 11:42	ND	0.050								
ithium 610.362 [Axial]	5/11/22 16:36	ND	0.040								
_CS (2D29022-BS1)											
Barium 455.403 [Radial]	5/11/22 16:40	0.207	0.010	mg/L	0.200		103	85-115			
Barium 493.409 [Radial]	5/6/22 11:46	0.218	0.010		0.200		109	85-115			
3oron 249.773 [Radial]	5/6/22 11:46	0.211	0.050		0.200		106	85-115			
Calcium 315.887 [Radial]	5/6/22 11:46	0.217	0.050		0.200		108	85-115			
ithium 610.362 [Axial]	5/11/22 16:40	0.227	0.040		0.200		114	85-115			
_CS Dup (2D29022-BSD1)											
Barium 455.403 [Radial]	5/11/22 16:44	0.204	0.010	mg/L	0.200		102	85-115	1.45	20	
Barium 493.409 [Radial]	5/6/22 11:50	0.217	0.010		0.200		108	85-115	0.478	20	
Boron 249.773 [Radial]	5/6/22 11:50	0.215	0.050		0.200		108	85-115	1.86	20	
Calcium 315.887 [Radial]	5/6/22 11:50	0.222	0.050		0.200		111	85-115	2.33	20	
ithium 610.362 [Axial]	5/11/22 16:44	0.227	0.040		0.200		113	85-115	0.322	20	
Duplicate (2D29022-DUP1)			Source: 22045	31-07							
Boron 249.773 [Radial]	5/6/22 12:49	5.65	0.050	mg/L		5.42			4.33	20	
Calcium 315.887 [Radial]	5/10/22 15:38	98.0	0.500			101			3.03	20	
Matrix Spike (2D29022-MS1)			Source: 22045	31-07							
Barium 493.409 [Radial]	5/6/22 12:49	0.235	0.010	mg/L	0.200	0.026	104	70-130			
Barium 455.403 [Radial]	5/12/22 11:41	0.219	0.010		0.200	0.025	97.1	70-130			
Boron 249.773 [Radial]	5/6/22 12:49	5.65	0.050		0.200	5.42	120	70-130			
.ithium 610.362 [Axial]	5/12/22 11:41	0.656	0.040		0.200	0.429	113	70-130			

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Micro-Methods Laboratory, Inc.

Reported:

Environmental Management Services

PO Box 15369

Hattiesburg MS, 39404-5369

Project: Cooperative Energy CCR Semiannual

Project Number: [none]

Project Manager: Ken Ruckstuhl 06/23/2022 16:00

Metals by EPA 200 Series Methods ICP-AES - Quality Control

Analyte	Analyzed	Result	MRL	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Qualifiers
Batch 2D29022 - EPA 200.2 DCN 10	17 Rev 10										
Matrix Spike Dup (2D29022-MSD1)			Source: 22045	31-07							
Barium 455.403 [Radial]	5/12/22 11:45	0.219	0.010	mg/L	0.200	0.025	97.1	70-130	0.0388	20	
Barium 493.409 [Radial]	5/6/22 12:53	0.234	0.010		0.200	0.026	104	70-130	0.236	20	
Boron 249.773 [Radial]	5/6/22 12:53	5.67	0.050		0.200	5.42	126	70-130	0.221	20	
Lithium 610.362 [Axial]	5/12/22 11:45	0.651	0.040		0.200	0.429	111	70-130	0.625	20	

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Micro-Methods Laboratory, Inc.

Environmental Management Services

PO Box 15369

Hattiesburg MS, 39404-5369

Project: Cooperative Energy CCR Semiannual

Project Number: [none]

Project Manager: Ken Ruckstuhl

Reported: 06/23/2022 16:00

Metals by EPA 200 Series Methods ICP-MS [Analysis Mode] - Quality Control

Analyte	Analyzed	Result	MRL	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Qualifiers
Batch 2D29020 - EPA 200.2 DCN 1	1017 Rev 10										
Blank (2D29020-BLK1)											
Antimony [He]	5/4/22 17:57	ND	0.00200	mg/L							
Arsenic [NG]	5/4/22 17:57	ND	0.00200								
Beryllium [He]	5/4/22 17:57	ND	0.00400								
Cadmium [He]	5/4/22 17:57	ND	0.00500								
Chromium [He]	5/4/22 17:57	ND	0.0100								
Cobalt [He]	5/4/22 17:57	ND	0.00100								
ead [He]	5/4/22 17:57	ND	0.00100								
Molybdenum [He]	5/10/22 12:52	ND	0.00500								
Nickel [He]	5/4/22 17:57	ND	0.00100								
Selenium [NG]	5/4/22 17:57	ND	0.0500								
Γhallium [He]	5/4/22 17:57	ND	0.00200								
-CS (2D29020-BS1)											
Intimony [He]	5/4/22 18:02	0.104	0.00200	mg/L	0.100		104	85-115			
Arsenic [NG]	5/4/22 18:02	0.101	0.00200		0.100		101	85-115			
Beryllium [He]	5/4/22 18:02	0.096	0.00100		0.100		95.6	85-115			
Cadmium [He]	5/4/22 18:02	0.102	0.00100		0.100		102	85-115			
Chromium [He]	5/4/22 18:02	0.101	0.00100		0.100		101	85-115			
Cobalt [He]	5/4/22 18:02	0.103	0.00100		0.100		103	85-115			
_ead [He]	5/4/22 18:02	0.097	0.00100		0.100		96.9	85-115			
Molybdenum [He]	5/4/22 18:02	0.098	0.00100		0.100		98.2	85-115			
Nickel [He]	5/4/22 18:02	0.097	0.00100		0.100		96.8	85-115			
Selenium [NG]	5/4/22 18:02	0.104	0.00500		0.100		104	85-115			
Thallium [He]	5/4/22 18:02	0.100	0.00200		0.100		99.7	85-115			
LCS Dup (2D29020-BSD1)											
Antimony [He]	5/4/22 18:08	0.105	0.00200	mg/L	0.100		105	85-115	0.179	20	
Arsenic [NG]	5/4/22 18:08	0.097	0.00200	"	0.100		96.9	85-115	4.23	20	
Beryllium [He]	5/4/22 18:08	0.096	0.00100		0.100		96.1	85-115	0.572	20	
Cadmium [He]	5/4/22 18:08	0.101	0.00100		0.100		101	85-115	1.03	20	
Chromium [He]	5/4/22 18:08	0.101	0.00100		0.100		101	85-115	0.699	20	
Cobalt [He]	5/4/22 18:08	0.103	0.00100		0.100		103	85-115	0.0408	20	
ead [He]	5/4/22 18:08	0.097	0.00100		0.100		96.7	85-115	0.259	20	
Molybdenum [He]	5/4/22 18:08	0.097	0.00100		0.100		97.4	85-115	0.819	20	
Nickel [He]	5/4/22 18:08	0.098	0.00100		0.100		98.1	85-115	1.34	20	
Selenium [NG]	5/4/22 18:08	0.097	0.00500		0.100		97.1	85-115	6.63	20	
Thallium [He]	5/4/22 18:08	0.100	0.00200		0.100		99.8	85-115	0.0439	20	

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Micro-Methods Laboratory, Inc.

Environmental Management Services

PO Box 15369

Hattiesburg MS, 39404-5369

Project: Cooperative Energy CCR Semiannual

Project Number: [none]

Project Manager: Ken Ruckstuhl

Reported: 06/23/2022 16:00

Metals by EPA 200 Series Methods ICP-MS [Analysis Mode] - Quality Control

Analyte	Analyzed	Result	MRL	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Qualifiers
Batch 2D29020 - EPA 200.2 DCI	N 1017 Rev 10										
Matrix Spike (2D29020-MS1)			Source: 22045	31-07							
Antimony [He]	5/4/22 20:11	0.108	0.00200	mg/L	0.100	ND	108	70-130			
Arsenic [NG]	5/4/22 20:11	0.095	0.00200		0.100	ND	95.0	70-130			
Beryllium [He]	5/4/22 20:11	0.096	0.00100		0.100	0.008	88.9	70-130			
Cadmium [He]	5/4/22 20:11	0.099	0.00100		0.100	0.0006	98.3	70-130			
Chromium [He]	5/4/22 20:11	0.097	0.00100		0.100	0.0002	96.9	70-130			
Cobalt [He]	5/4/22 20:11	0.217	0.00100		0.100	0.123	93.4	70-130			
Lead [He]	5/4/22 20:11	0.097	0.00100		0.100	0.003	93.8	70-130			
Molybdenum [He]	5/4/22 20:11	0.106	0.00100		0.100	0.0008	105	70-130			
Nickel [He]	5/4/22 20:11	0.117	0.00100		0.100	0.039	78.5	70-130			
Selenium [NG]	5/4/22 20:11	0.104	0.00500		0.100	800.0	95.6	70-130			
Thallium [He]	5/4/22 20:11	0.103	0.00200		0.100	ND	103	70-130			
Matrix Spike Dup (2D29020-MS	D1)		Source: 22045	31-07							
Antimony [He]	5/4/22 20:17	0.106	0.00200	mg/L	0.100	ND	106	70-130	1.62	20	
Arsenic [NG]	5/4/22 20:17	0.092	0.00200	"	0.100	ND	92.4	70-130	2.70	20	
Beryllium [He]	5/4/22 20:17	0.094	0.00100	"	0.100	0.008	86.1	70-130	2.99	20	
Cadmium [He]	5/4/22 20:17	0.099	0.00100	"	0.100	0.0006	98.5	70-130	0.246	20	
Chromium [He]	5/4/22 20:17	0.098	0.00100		0.100	0.0002	97.9	70-130	0.959	20	
Cobalt [He]	5/4/22 20:17	0.219	0.00100		0.100	0.123	95.9	70-130	1.14	20	
Lead [He]	5/4/22 20:17	0.097	0.00100		0.100	0.003	94.0	70-130	0.229	20	
Molybdenum [He]	5/4/22 20:17	0.106	0.00100		0.100	0.0008	105	70-130	0.0762	20	
Nickel [He]	5/4/22 20:17	0.119	0.00100		0.100	0.039	79.9	70-130	1.20	20	
Selenium [NG]	5/4/22 20:17	0.102	0.00500		0.100	0.008	93.8	70-130	1.74	20	
Thallium [He]	5/4/22 20:17	0.104	0.00200	"	0.100	ND	104	70-130	0.855	20	

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Micro-Methods Laboratory, Inc.

Environmental Management Services

PO Box 15369

Hattiesburg MS, 39404-5369

Project: Cooperative Energy CCR Semiannual

Project Number: [none]

Project Manager: Ken Ruckstuhl

Reported: 06/23/2022 16:00

Certified Analyses Included in this Report

Analyte	Certification Code
EPA 200.7 Rev 4.4 in Water	
Aluminum 237.312 [Radial]	C01,C02
Aluminum 394.401 [Radial]	C01,C02
Aluminum 396.152 [Radial]	C01,C02
Antimony 206.833 [Axial]	C01,C02
Arsenic 193.759 [Axial]	C01,C02
Barium 455.403 [Radial]	C01,C02
Barium 493.409 [Radial]	C01,C02
Beryllium 313.042 [Axial]	C01,C02
Boron 249.773 [Radial]	C01,C02
Cadmium 228.802 [Axial]	C01,C02
Calcium 315.887 [Radial]	C01,C02
Chromium 283.563 [Axial]	C01,C02
Cobalt 228.616 [Axial]	C01,C02
Copper 324.754 [Axial]	C01,C02
Iron 259.940 [Axial]	C01,C02
Iron 259.940 [Radial]	C01,C02
Lead 220.353 [Axial]	C01,C02
Lithium 610.362 [Axial]	C01,C02
Magnesium 285.213 [Radial]	C01,C02
Manganese 257.610 [Axial]	C01,C02
Molybdenum 202.030 [Axial]	C01,C02
Nickel 231.604 [Axial]	C01,C02
Potassium 766.490 [Radial]	C01,C02
Phosphorus 178.284 [Axial]	C01,C02
Phosphorus 178.284 [Radial]	C01,C02
Selenium 196.090 [Axial]	C01,C02
Silver 328.068 [Axial]	C01,C02
Sodium 589.592 [Axial]	C01,C02
Sodium 589.592 [Radial]	C01,C02
Strontium 346.446 [Radial]	C01,C02
Strontium 421.552 [Radial]	C01,C02
Thallium 190.856 [Axial]	C01,C02
Tin 189.989 [Axial]	C01,C02
Titanium 334.941 [Axial]	C01,C02
Vanadium 309.311 [Axial]	C01,C02
Zinc 213.856 [Axial]	C01,C02
EPA 200.8 Rev 5.4 in Water	
Aluminum [He]	C01,C02
Antimony [He]	C01,C02

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Micro-Methods Laboratory, Inc.

Environmental Management Services	Project: Cooperative Energy CCR Semiannual	
PO Box 15369	Project Number: [none]	Reported:
Hattiesburg MS, 39404-5369	Project Manager: Ken Ruckstuhl	06/23/2022 16:00

Antimony [HHe]	C01,C02
Antimony [NG]	C01,C02
Arsenic [He]	C01,C02
Arsenic [HHe]	C01,C02
Arsenic [NG]	C01,C02
Barium [He]	C01,C02
Beryllium [He]	C01,C02
Boron [NG]	C01,C02
Cadmium [He]	C01,C02
Cadmium [HHe]	C01,C02
Cadmium [NG]	C01,C02
Chromium [He]	C01,C02
Cobalt [He]	C01,C02
Copper [He]	C01,C02
Copper [NG]	C01,C02
Iron [He]	C01,C02
Lead [He]	C01,C02
Lead [NG]	C01,C02
Manganese [He]	C01,C02
Molybdenum [He]	C01,C02
Nickel [He]	C01,C02
Selenium [He]	C01,C02
Selenium [HHe]	C01,C02
Selenium [NG]	C01,C02
Silver [He]	C01,C02
Silver [NG]	C01,C02
Strontium [He]	C01,C02
Thallium [He]	C01,C02
Vanadium [He]	C01,C02
Zinc [He]	C01,C02
SM 2540 C-2015 in Water	

SM 2540 C-2015 in Water

Total Dissolved Solids C01,C02

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Micro-Methods Laboratory, Inc.

^{**}Only compounds included in this list are associated with accredited analyses**

Environmental Management Services

PO Box 15369

Hattiesburg MS, 39404-5369

Project: Cooperative Energy CCR Semiannual

Project Number: [none]

Project Manager: Ken Ruckstuhl

Reported: 06/23/2022 16:00

Laboratory Accreditations/Certifications

Code	Description	Number	Expires		
C01	LA Environmental Lab Accreditation Program	01960	06/30/2022		
C02	The NELAC Institute (NELAP)	TNI01397	06/30/2022		
C03	Ms Dept of Health (Drinking Water Microbiology)	MS00021	12/31/2022		
C04	Ms Dept of Health (Drinking Water Chemistry)	MS00021	12/31/2022		
C05	Ms DEQ Lead Firm Certification	PBF-00000028	03/24/2023		
C06	MsDEQ Asbestos Inspector : C.D. Bingham	ABI-00001348	02/12/2023		
C07	MsDEQ Air Monitor : C.D. Bingham	AM-011572	02/13/2023		
C08	MsDEQ Asbestos Inspector: C. W. Meins	ABI-00001821	09/09/2022		
C09	MsDEQ Air Monitor: C.W. Meins	AM-011189	02/13/2023		
C14	MsDEQ Lead Paint Inspector : C.D. Bingham	PBI-00003690	01/29/2023		
C15	MsDEQ Lead Paint Inspector : C.W. Meins	PBI-00001740	01/29/2023		

Report Definitions

DET ND NR	Analyte DETECTED Analyte NOT DETECTED at or above the minimum reporting limit Not Reported
RPD	Relative Percent Difference
ICV	Initial Calibration Verfiication
CCV	Continuing Calibration Verification Standard
SSV	Secondary Source Verfication Standard
LCS	Lab Control Spike - Lab matrix prepared with known concentration of analyte/s of interest analyzed by method.
MS	Matrix Spike - Sample prepared with known concentration of analyte/s of interest analyzed by method.
MSD	Matrix Spike Duplicate - Duplicate sample prepared with known concentration of anlayte/s of interest analyzed by method.
MRL	Minimum Reporting Limit
%REC	Percentage Recovery of known concentration added to matrix
Batch	Group of samples prepared for analysis not to exceed 20 samples.
Matrix	Material containing analyte/s of interest
Surrogate	Analyte added to sample to determine extraction efficiency of method.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Micro-Methods Laboratory, Inc.

Environmental Management Services Project: Cooperative Energy CCR Semiannual

PO Box 15369 Project Number: [none] Reported:
Hattiesburg MS, 39404-5369 Project Manager: Ken Ruckstuhl 06/23/2022 16:00

Analyst Initials Key	
<u>FullName</u>	<u>Initials</u>
Camie Bourne Charles L Vorhoff Dortha L. Wells Sarah E. Tomek Stella S Kleist Teresa Meins Tina Tomek	CLB CLV DLW SET SSK TKM TPT

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Micro-Methods Laboratory, Inc.

PO Box 1410, Ocean Springs, MS 39566-1410 (228) 875-6420 FAX (228) 875-6423 www.micromethodslab.com

Chain of Custody Record

Lab ID# MS00021 LELAP ID # 01960 TNI ID # TNI01397

M-M Lab MO# MO#

Received by	Relinquished by	Received by	Relinquished by	Received by	Relinquished by		Date & Time	Received on Ice Y/N Th	5			late 10	NIW O	i		Jan Jan	N. W. C.	DV I	V 0.4	Sample Identification	Project #:			-ax:	Prone: (601)544-3674	tuff ice	10 Bcx 1	Company Name:
				an Tomer 1	Han Niver	Printed Name	Ву: 0	Thermometer# Cooler #	M			136W 10.45	1 36 dx 10 15	7.66.60 13.70	4.16.15 15	16:11 70.00	7-NXA (0.15	20 1 VAN L	4.77 0 000	Sampling	`	copy live tracky CCK XeMAM			3674	State: M 5 Zip: 3940	1999	
			0	wantomen in	Willer Iller E	Signature Company	SampleBlank	er # Receipt Temp Corrected(°C					7		× ×	7	-	2 0 < × ×	#	Children Chi		en .	List Analyses Requested	Sampler Name Signed:	Sampler Name Printed: AUL	# Email Address: 1 Roll KST	ruichase Order #:	Project Manager: Km Ruck
00				M H27/02 /350	NS 43712 B.50	Date Time	Cooler **	cted(°C)										. X - X		Rao	ls iun		Requested	consider o	Niver -	hule envinstion		Visthal
00/er # 1126 0.3°C	TITAINEM MOY DEERLAND S	Chrom wing copie!) lear	per yllivin, cooming	amirmany arsemy veron	Appliant 111/18, our por		**All Temps are Corrected Values**															Field Test Field Test Field Test	Field lesting	Level 2	Other*	Next Day* requests must be	*All rush order	Turn Around Time & Reporting Our normal turn around time is 10 working days
	nym seremum	Michel	Media	- Harrow	A. Karina	<u> </u>	9=NaHSO4	%=HCl	6=HNO3	5=ZnC4H10O6 &	3=NaOH 4=ZnC4H10O6	2= H3PO4	1= H2SO4	Precervation:		SL = Sludge	0 = 0il	L = Liquid A = Air	SE = Sediment	S = Solid SO = Soil	DW = Drinking Water			Level 3	Email	Mail _Fax	Phone	eporting vorking davs

Physical Address: 6500 Sunplex Drive, Ocean Springs MS 39564

June 03, 2022

Tina Tomek Micro-Methods Lab 6500 Sunplex Drive Ocean Springs, MS 39564

RE: Project: 2204531

Pace Project No.: 30485367

Dear Tina Tomek:

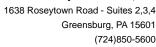
Enclosed are the analytical results for sample(s) received by the laboratory on May 03, 2022. The results relate only to the samples included in this report. Results reported herein conform to the applicable TNI/NELAC Standards and the laboratory's Quality Manual, where applicable, unless otherwise noted in the body of the report.

The test results provided in this final report were generated by each of the following laboratories within the Pace Network:

• Pace Analytical Services - Greensburg

If you have any questions concerning this report, please feel free to contact me.

Sincerely,


David A. Pichette david.pichette@pacelabs.com (724)850-5617 Project Manager

trul Politic

Enclosures

cc: Accounts Payable, Micro-Methods Lab

CERTIFICATIONS

Project: 2204531
Pace Project No.: 30485367

Pace Analytical Services Pennsylvania

1638 Roseytown Rd Suites 2,3&4, Greensburg, PA 15601

ANAB DOD-ELAP Rad Accreditation #: L2417

Alabama Certification #: 41590 Arizona Certification #: AZ0734 Arkansas Certification

California Certification #: 04222CA Colorado Certification #: PA01547 Connecticut Certification #: PH-0694

Delaware Certification EPA Region 4 DW Rad

Florida/TNI Certification #: E87683 Georgia Certification #: C040 Florida: Cert E871149 SEKS WET

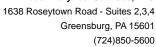
Guam Certification Hawaii Certification Idaho Certification Illinois Certification Indiana Certification Iowa Certification #: 391

Kansas/TNI Certification #: E-10358 Kentucky Certification #: KY90133 KY WW Permit #: KY0098221 KY WW Permit #: KY0000221

Louisiana DHH/TNI Certification #: LA180012 Louisiana DEQ/TNI Certification #: 4086

Maine Certification #: 2017020 Maryland Certification #: 308

Massachusetts Certification #: M-PA1457 Michigan/PADEP Certification #: 9991 Missouri Certification #: 235
Montana Certification #: Cert0082
Nebraska Certification #: NE-OS-29-14
Nevada Certification #: PA014572018-1
New Hampshire/TNI Certification #: 297617
New Jersey/TNI Certification #: PA051
New Mexico Certification #: PA01457
New York/TNI Certification #: 10888
North Carolina Certification #: 42706
North Dakota Certification #: R-190


Oregon/TNI Certification #: PA200002-010 Pennsylvania/TNI Certification #: 65-00282 Puerto Rico Certification #: PA01457 Rhode Island Certification #: 65-00282

South Dakota Certification
Tennessee Certification #: 02867

Ohio EPA Rad Approval: #41249

Texas/TNI Certification #: T104704188-17-3 Utah/TNI Certification #: PA014572017-9 USDA Soil Permit #: P330-17-00091 Vermont Dept. of Health: ID# VT-0282 Virgin Island/PADEP Certification Virginia/VELAP Certification #: 460198 Washington Certification #: C868 West Virginia DEP Certification #: 143 West Virginia DHHR Certification #: 9964C

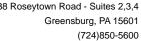
Wisconsin Approve List for Rad Wyoming Certification #: 8TMS-L

SAMPLE SUMMARY

Project: 2204531
Pace Project No.: 30485367

Lab ID	Sample ID	Matrix	Date Collected	Date Received
30485367001	2204531-01	Water	04/27/22 09:00	05/03/22 09:35
30485367002	2204531-02	Water	04/27/22 10:15	05/03/22 09:35
30485367003	2204531-03	Water	04/27/22 11:30	05/03/22 09:35
30485367004	2204531-04	Water	04/27/22 15:15	05/03/22 09:35
30485367005	2204531-05	Water	04/27/22 13:20	05/03/22 09:35
30485367006	2204531-06	Water	04/26/22 12:15	05/03/22 09:35
30485367007	2204531-07	Water	04/26/22 10:45	05/03/22 09:35

(724)850-5600

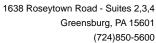


SAMPLE ANALYTE COUNT

Project: 2204531
Pace Project No.: 30485367

Lab ID	Sample ID	Method	Analysts	Analytes Reported
30485367001	2204531-01	EPA 903.1	RPS	1
		EPA 904.0	JSM	1
30485367002	2204531-02	EPA 903.1	RPS	1
		EPA 904.0	JSM	1
30485367003	2204531-03	EPA 903.1	RPS	1
		EPA 904.0	JSM	1
30485367004	2204531-04	EPA 903.1	RPS	1
		EPA 904.0	JSM	1
30485367005	2204531-05	EPA 903.1	RPS	1
		EPA 904.0	JSM	1
30485367006	2204531-06	EPA 903.1	RPS	1
		EPA 904.0	JSM	1
30485367007	2204531-07	EPA 903.1	RPS	1
		EPA 904.0	JSM	1

PASI-PA = Pace Analytical Services - Greensburg

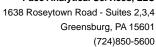

ANALYTICAL RESULTS - RADIOCHEMISTRY

Project: 2204531
Pace Project No.: 30485367

Sample: 2204531-01 PWS:	Lab ID: 30485 Site ID:	367001 Collected: 04/27/22 09:00 Sample Type:	Received:	05/03/22 09:35	Matrix: Water	
Parameters	Method	Act ± Unc (MDC) Carr Trac	Units	Analyzed	CAS No.	Qual
- arametere		Services - Greensburg		7		
Radium-226	EPA 903.1	0.182 ± 0.258 (0.438) C:NA T:85%	pCi/L	06/02/22 11:40	13982-63-3	
	Pace Analytical S	Services - Greensburg				
Radium-228	EPA 904.0	1.81 ± 0.586 (0.779) C:76% T:85%	pCi/L	05/19/22 15:55	5 15262-20-1	
Sample: 2204531-02 PWS:	Lab ID: 30485 Site ID:	367002 Collected: 04/27/22 10:15 Sample Type:	Received:	05/03/22 09:35	Matrix: Water	
Parameters	Method	Act ± Unc (MDC) Carr Trac	Units	Analyzed	CAS No.	Qual
	Pace Analytical S	Services - Greensburg		·		
Radium-226	EPA 903.1	0.0691 ± 0.192 (0.372) C:NA T:86%	pCi/L	06/02/22 11:40	13982-63-3	
	Pace Analytical S	Services - Greensburg				
Radium-228	EPA 904.0	0.950 ± 0.412 (0.657) C:77% T:86%	pCi/L	05/19/22 15:55	5 15262-20-1	
Sample: 2204531-03	Lab ID: 30485	367003 Collected: 04/27/22 11:30	Received:	05/03/22 09:35	Matrix: Water	
PWS:	Site ID:	Sample Type:				
Parameters	Method	Act ± Unc (MDC) Carr Trac	Units	Analyzed	CAS No.	Qual
	Pace Analytical S	Services - Greensburg				
Radium-226	EPA 903.1	-0.0320 ± 0.208 (0.451) C:NA T:89%	pCi/L	06/02/22 11:40	13982-63-3	
	Pace Analytical S	Services - Greensburg				
Radium-228	EPA 904.0	1.42 ± 0.477 (0.648) C:81% T:89%	pCi/L	05/19/22 15:55	5 15262-20-1	
Sample: 2204531-04 PWS:	Lab ID: 30485 Site ID:	367004 Collected: 04/27/22 15:15 Sample Type:	Received:	05/03/22 09:35	Matrix: Water	
Parameters	Method	Act ± Unc (MDC) Carr Trac	Units	Analyzed	CAS No.	Qual
	Pace Analytical S	Services - Greensburg				
Radium-226	EPA 903.1	-0.0336 ± 0.198 (0.441) C:NA T:88%	pCi/L	06/02/22 11:40	13982-63-3	
	Pace Analytical S	ervices - Greensburg				
		0.842 ± 0.439 (0.789)	pCi/L			

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, LLC.



ANALYTICAL RESULTS - RADIOCHEMISTRY

Project: 2204531
Pace Project No.: 30485367

Sample: 2204531-05 PWS:	Lab ID: 30485 Site ID:	367005 Collected: 04/27/22 13:20 Sample Type:	Received:	05/03/22 09:35 N	latrix: Water	
Parameters	Method	Act ± Unc (MDC) Carr Trac	Units	Analyzed	CAS No.	Qual
	Pace Analytical S	Gervices - Greensburg				
Radium-226	EPA 903.1	0.0340 ± 0.155 (0.251) C:NA T:90%	pCi/L	06/02/22 11:40	13982-63-3	
	Pace Analytical S	ervices - Greensburg				
Radium-228	EPA 904.0	0.504 ± 0.419 (0.828) C:81% T:90%	pCi/L	05/19/22 19:04	15262-20-1	
Sample: 2204531-06 PWS:	Lab ID: 30485 Site ID:	367006 Collected: 04/26/22 12:15 Sample Type:	Received:	05/03/22 09:35 N	latrix: Water	
Parameters	Method	Act ± Unc (MDC) Carr Trac	Units	Analyzed	CAS No.	Qual
	Pace Analytical S	Services - Greensburg				
Radium-226	EPA 903.1	0.397 ± 0.273 (0.292) C:NA T:89%	pCi/L	06/02/22 13:01	13982-63-3	
	Pace Analytical S	ervices - Greensburg				
Radium-228	EPA 904.0	0.396 ± 0.380 (0.775) C:66% T:89%	pCi/L	05/20/22 14:52	15262-20-1	
Sample: 2204531-07 PWS:	Lab ID: 30485 : Site ID:	367007 Collected: 04/26/22 10:45 Sample Type:	Received:	05/03/22 09:35 M	latrix: Water	
Parameters	Method	Act ± Unc (MDC) Carr Trac	Units	Analyzed	CAS No.	Qual
	Pace Analytical S	Gervices - Greensburg				
Radium-226	EPA 903.1	0.264 ± 0.198 (0.102) C:NA T:91%	pCi/L	06/02/22 13:01	13982-63-3	
	Pace Analytical S	Services - Greensburg				
Radium-228	EPA 904.0	0.899 ± 0.410 (0.675) C:74% T:91%	pCi/L	05/20/22 14:52	15262-20-1	

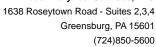
Project: 2204531
Pace Project No.: 30485367

QC Batch: 503375 Analysis Method: EPA 904.0

QC Batch Method: EPA 904.0 Analysis Description: 904.0 Radium 228

Laboratory: Pace Analytical Services - Greensburg

Associated Lab Samples: 30485367006, 30485367007


METHOD BLANK: 2437422 Matrix: Water

Associated Lab Samples: 30485367006, 30485367007

 Parameter
 Act ± Unc (MDC) Carr Trac
 Units
 Analyzed
 Qualifiers

 Radium-228
 0.390 ± 0.357 (0.722) C:70% T:90%
 pCi/L
 05/20/22 14:50

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

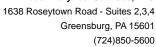
Project: 2204531
Pace Project No.: 30485367

QC Batch: 503370 Analysis Method: EPA 903.1

QC Batch Method: EPA 903.1 Analysis Description: 903.1 Radium-226

Laboratory: Pace Analytical Services - Greensburg

Associated Lab Samples: 30485367001, 30485367002, 30485367003, 30485367004, 30485367005


METHOD BLANK: 2437407 Matrix: Water

Associated Lab Samples: 30485367001, 30485367002, 30485367003, 30485367004, 30485367005

 Parameter
 Act ± Unc (MDC) Carr Trac
 Units
 Analyzed
 Qualifiers

 Radium-226
 0.0383 ± 0.291 (0.575) C:NA T:82%
 pCi/L
 06/02/22 11:40

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

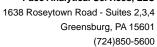
Project: 2204531
Pace Project No.: 30485367

QC Batch: 503371 Analysis Method: EPA 904.0

QC Batch Method: EPA 904.0 Analysis Description: 904.0 Radium 228

Laboratory: Pace Analytical Services - Greensburg

Associated Lab Samples: 30485367001, 30485367002, 30485367003, 30485367004, 30485367005


METHOD BLANK: 2437409 Matrix: Water

Associated Lab Samples: 30485367001, 30485367002, 30485367003, 30485367004, 30485367005

 Parameter
 Act ± Unc (MDC) Carr Trac
 Units
 Analyzed
 Qualifiers

 Radium-228
 0.261 ± 0.286 (0.596) C:86% T:82%
 pCi/L
 05/19/22 15:55

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project: 2204531
Pace Project No.: 30485367

QC Batch: 503373 QC Batch Method: EPA 903.1

73 Analysis Method:

Analysis Description:

Matrix: Water

EPA 903.1

903.1 Radium-226

Laboratory:

Pace Analytical Services - Greensburg

Associated Lab Samples: 30485367006, 30485367007

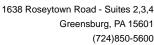
METHOD BLANK: 2437417

1

Associated Lab Samples:

30485367006, 30485367007

Parameter


Act ± Unc (MDC) Carr Trac

Units pCi/L Analyzed 06/02/22 12:17

Qualifiers

Radium-226 0.0996 ± 0.235 (0.435) C:NA T:90%

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

QUALIFIERS

Project: 2204531 Pace Project No.: 30485367

DEFINITIONS

DF - Dilution Factor, if reported, represents the factor applied to the reported data due to dilution of the sample aliquot.

ND - Not Detected at or above adjusted reporting limit.

TNTC - Too Numerous To Count

J - Estimated concentration above the adjusted method detection limit and below the adjusted reporting limit.

MDL - Adjusted Method Detection Limit.

PQL - Practical Quantitation Limit.

RL - Reporting Limit - The lowest concentration value that meets project requirements for quantitative data with known precision and bias for a specific analyte in a specific matrix.

S - Surrogate

1,2-Diphenylhydrazine decomposes to and cannot be separated from Azobenzene using Method 8270. The result for each analyte is a combined concentration.

Consistent with EPA guidelines, unrounded data are displayed and have been used to calculate % recovery and RPD values.

LCS(D) - Laboratory Control Sample (Duplicate)

MS(D) - Matrix Spike (Duplicate)

DUP - Sample Duplicate

RPD - Relative Percent Difference

NC - Not Calculable.

SG - Silica Gel - Clean-Up

U - Indicates the compound was analyzed for, but not detected.

N-Nitrosodiphenylamine decomposes and cannot be separated from Diphenylamine using Method 8270. The result reported for each analyte is a combined concentration.

Reported results are not rounded until the final step prior to reporting. Therefore, calculated parameters that are typically reported as "Total" may vary slightly from the sum of the reported component parameters.

Act - Activity

Date: 06/03/2022 06:00 PM

Unc - Uncertainty: For Safe Drinking Water Act (SDWA) analyses, the reported Unc. Is the calculated Count Uncertainty (95% confidence interval) using a coverage factor of 1.96. For all other matrices (non-SDWA), the reported Unc. is the calculated Expanded Uncertainty (aka Combined Standard Uncertainty, CSU), reported at the 95% confidence interval using a coverage factor of 1.96.

Gamma Spec: The Unc. reported for all gamma-spectroscopy analyses (EPA 901.1), is the calculated Expanded Uncertainty (CSU) at the 95.4% confidence interval, using a coverage factor of 2.0.

(MDC) - Minimum Detectable Concentration

Trac - Tracer Recovery (%)

Carr - Carrier Recovery (%)

Pace Analytical is TNI accredited. Contact your Pace PM for the current list of accredited analytes.

TNI - The NELAC Institute.

SUBCONTRACT ORDER

Sending Laboratory:

Micro-Methods Laboratory, Inc.

6500 Sunplex Drive

Ocean Springs, MS 39564

Phone: 228.875.6420 Fax: 228.875.6423

Project Manager: Teresa Meins

Subcontracted Laboratory:

Pace Analytical-7

1638 Roseytown Rd. Suites 2, 3, 4

Greensburg, PA 15601 Phone: (724) 850-5600

Fax: -

WO#: 30485367

Work Order: 2204531

Analysis	Due	Expires	Comments		
	r Sampled: 04/27	/2022 09:00	Sample Name:	BD-1	Od_
Radium, Total 226 & 228 by EPA 903.1	& 90 05/05/2022	05/25/2022 09:00			
Containers Supplied: 1000mL Plastic w/HNO3 (C) 1000mL Pla	astic w/HNO3 (D)				
Sample ID: 2204531-02 Wate	er Sampled: 04/27	//2022 10:15	Sample Name:	MW-2	<u> </u>
Radium, Total 226 & 228 by EPA 903.1	& 90 05/05/2022	05/25/2022 10:15			
Containers Supplied: 1000mL Plastic w/HNO3 (C) 1000mL Pla	astic w/HNO3 (D)				6.0
Sample ID: 2204531-03 Wate	er Sampled: 04/27	7/2022 11:30	Sample Name:	MW-3	003
Radium, Total 226 & 228 by EPA 903.1	& 90 05/05/2022	05/25/2022 11:30			
Containers Supplied: 1000mL Plastic w/HNO3 (C) 1000mL Pla	astic w/HNO3 (D)				
Sample ID: 2204531-04 Wate	er Sampled: 04/20	5/2022 15:15	Sample Name:	MW-4	<u> </u>
Radium, Total 226 & 228 by EPA 903.1	& 90 05/05/2022	05/24/2022 15:15			
Containers Supplied: 1000mL Plastic w/HNO3 (C) 1000mL Pl	astic w/HNO3 (D) 1000i	mL Plastic w/HNO3 (E) 1000mL Plastic v	w/HNO3 (F)	
Sample ID: 2204531-05 Wate	er Sampled: 04/20	5/2022 13:20	Sample Name:	MW-5	005
Radium, Total 226 & 228 by EPA 903.1	& 90 05/05/2022	05/24/2022 13:20	1		
Smah Jameh 4/2 Released By IMS	8/22/9 1/43/) Date	Recei	ved By Olah	4/28/220	1630 Date 5-3-22-9:35
Released By	Date	Recei	ved By		Date
Released By	Date	Recei	ved By		Date
Released By	Date	Recei	ved By		Date
Released By	Date	Recei	ved By		Date
		Dan- 4 of 2			

SUBCONTRACT ORDER

(Continued)

Work Order: 2204531 (Continued)

Analysis	Due	Expires	Comments	
Containers Supplied: 1000mL Plastic w/HNO3 (C) 1000mL Pla	stic w/HNO3 (D)			
Sample ID: 2204531-06 <i>Wate</i>	r Sampled: 04/20	5/2022 12:15	Sample Name: MW-6	006
Radium, Total 226 & 228 by EPA 903.1	& 90 05/05/2022	05/24/2022 12:1	5	
Containers Supplied: 1000mL Plastic w/HNO3 (C) 1000mL Pla	stic w/HNO3 (D)			
Sample ID: 2204531-07 Wate	r Sampled: 04/20	5/2022 10:45	Sample Name: MW-10	007
Radium, Total 226 & 228 by EPA 903.1	& 90 05/05/2022	05/24/2022 10:4	5	
Containers Supplied: 1000mL Plastic w/HNO3 (C) 1000mL Pla	stic w/HNO3 (D)			

WO#: 30485367

Due Date: 05/24/22

CLIENT: MICROMETHOD

Smah Jones	4/28/220 1630	WS 4/28	1201630
Released By	Date	Received By	Date
W5		3 (daly)	5-3-22-9:35
Released By	Date	Received By	Date
Released By	Date	Received By	Date
Released By	Date	Received By	Date
Released By	Date	Received By	Date

Pittsburgh Lab Sample Cond	ition	Upo	n Re	eceipt				
Face Analytical Client Name:	<u>Nica</u>	D-1	Me	thods	Project #_		_	
Courier: Fed Ex UPS USPS Clier	nt 🗀	Comm	ercial	Pace Other	Γ	Lahel - A		
Tracking #: 12 363 063 03 6896			oroidi			Label <u>AC</u> IMS Login VPInc		
Custody Seal on Cooler/Box Present: yes	<u> </u>	7	Seal	s intact: 🔲 yes 📋	no L			
Thermometer Used —				t Blue (None	_			
Cooler Temperature Observed Temp	-	٠c		ection Factor:	- °C Final T	emp: °C	σī	
Temp should be above freezing to 6°C		-					_	16
				pH paper Lot#	Date and In contents:	Itials of person examining 5-7つ2 つん	CLIENT:	31
Comments:	Yes	No	N/A	1004611				• •
Chain of Custody Present:	4/	,		1.			Due MICROMETHOD	S C
Chain of Custody Filled Out:	\	<u> </u>		2.			_	12
Chain of Custody Relinquished:	$+\!$	1		3.			를 된 기관	4853
Sampler Name & Signature on COC:		_		4.			- 5	S
Sample Labels match COC:	<u>''/</u>	<u> </u>		5.				(W
-Includes date/time/ID Matrix:	WI	7					-	တ
Samples Arrived within Hold Time:	<u> </u>	ļ.,		6,			05/24/22	
Short Hold Time Analysis (<72hr remaining):	ļ	<u> </u>		7.			. 24	
Rush Turn Around Time Requested:	ļ.,			8.			2	
Sufficient Volume:	<			9.				
Correct Containers Used:	\overline{V}	ļ.,		_ 10.				
-Pace Containers Used:		<u></u>]	
Containers Intact:	ļ	<u></u>		11 TWO BPIN M	ecrived em	pty for 004. Two	e brin re	CelV4 CalV4
Orthophosphate field filtered			\checkmark	12.		, 0	1	full
Hex Cr Aqueous sample field filtered		ļ	/	13.				
Organic Samples checked for dechlorination:			<u>\(\) \(\) \(\) \(\)</u>	14.			_	
Filtered volume received for Dissolved tests		/	V	15.				
All containers have been checked for preservation.	V			16. added 2,5	me HNOS	to oosttuo Bot	1125)	
exceptions: VOA, coliform, TOC, O&G, Phenolics, Non-aqueous matrix	Radon	· · · · · · · · · · · · · · · · · · ·			_			
All containers meet method preservation requirements.				Initial when completed	Date/time of preservation	5-7-22-10:46		
				[- 4 4] - 5	2-0473		1	
Headspace in VOA Vials (>6mm):			\mathcal{J}	17.				
Trip Blank Present:				18.	· · · · · · · · · · · · · · · · · · ·			
Trip Blank Custody Seals Present		,	/					
Rad Samples Screened < 0.5 mrem/hr				Initial when completed:	Date: 5-7-02	Survey Meter SN: 1563		
Client Notification/ Resolution:							4	
Person Contacted:			Date/	Time:	Contacte	ed By:	_	
Comments/ Resolution:							-	
							_	
				-				
					11		<u>•</u>	
							_	

Note: Whenever there is a discrepancy affecting North Carolina compliance samples, a copy of this form will be sent to the North Carolina DEHNR Certification Office (i.e. out of hold, incorrect preservative, out of temp, incorrect containers)

*PM review is documented electronically in LIMS. When the Project Manager closes the SRF Review schedule in LIMS. The review is in the Status section of the Workorder Edit Screen.

Kit for Volatile Solid

VOAK

5g Encore

/ Misc.

Plastic /

Wipe/Swab

Ziploc Bag

ZPLC

120mL Coliform Na Thiosulfate

1L plastic unpreserved

BP1U

1L plastic HNO3

BP1N SP5T

40mL clear VOA vial Na Thiosu

40mL clear VOA vial

VG9U VG9T 40mL clear VOA vial HCI

VG9H IGFU

100mL amber glass Na Thiosulfate

1L amber glass H2SO4

AG1S

Gallon Jug

GJN

100mL amber glass unprserved

AG5U

S

AG5T

Gallon Jug with HNO3

4oz amber wide jar

40mL amber VOA vial H2SO4

DG9S

Glass

Container Codes

Ç

တ

250mL plastic H2SO4 250mL plastic HNO3

BP3S

BP3N

BP3U BP3C

500mL amber glass unpreserve 500mL clear glass unpreserved

4oz wide jar unpreserved

NGFU

BG2U 4G2U

IL amber glass Na Thiosulfate

IL amber glass HCi

AG1H

AG1T

BG1U

8oz wide jar unpreserved

NGKU

250mL amber glass unpreserved

AG3U

Page 39 of 39

AG3S

250mL amber glass H2SO4

L clear glass unpreserved

1/2 Gallon Cubitainer

12GN

GCUB 1 Gallon Cubitainer

Water Solid

Ž

Non-aqueous liquid

占 S

250mL plastic unpreserved

500mL plastic unpreserved

500mL plastic H2SO4

BP2S

250ml plastic NAOH

Count	
ple Container C	
-Sample	
Lab	
Greensburg	
Pace G	

WO#: 30485367 micro-methods laboratory

Pace Analytical ®

Due Date: 05/24/22

CLIENT: MICROMETHOD

Notes

SPLC

MGKN

WGFU

VOAK

U69V

T69V

H6ĐΛ

BUDD

S69d

UE98

BP3S

ВРЗИ

ВЬЗС

BP2U

BP2S

าเฯล

1198

Besi

BGI

AG5T

USDA UEĐA

SE₅A

USDA

TIĐA

SIDY

н≀э∀

Matrix

Sample Line Item

2204531

Client

26

 \leq

Mailing Address: PO Box 1410 Ocean Springs, MS 39566-1410 6500 Sunplex Drive Ocean Springs, MS 39564 228.875.6420 Phone 228.875.6423 Fax

November 08, 2022

Ken Ruckstuhl Work Order #: 2209382

Environmental Management Services PO Box 15369

Hattiesburg, MS 39404-5369

RE: Cooperative Energy CCR Semiannual

Purchase Order #:

Enclosed are Micro-Methods Laboratory, Inc. results of analyses performed on samples received 09/23/2022 13:46. If you have any questions concerning this report, please feel free to contact the office.

Sincerely,

Mitch Spicer

Lab Director *Micro-Methods Laboratory, Inc.*

DISCLAIMER

The results only relate to the items or the sample and/or samples received by the laboratory. This report shall not be reproduced except in full, without the approval of the laboratory. All NELAP certified test methods performed meet the requirements of NELAC 2009 Standards. Any variances and/or deviations specific to this analytical report are referenced in the lab report using qualifiers and detailed explanations found in the case narrative.

Hattiesburg MS, 39404-5369

Project: Cooperative Energy CCR Semiannual

PO Box 15369

Project Number: SOU2-22-001
Project Manager: Ken Ruckstuhl

Reported: 11/08/2022 12:31

ANALYTICAL REPORT FOR SAMPLES

Sample ID	Laboratory ID	Matrix	Date/Time Sampled	Sampled by	Date/Time Received
MW-2	2209382-01	Water	09/23/2022 11:00	Alan Niven	09/23/2022 13:46
MW-3	2209382-02	Water	09/23/2022 09:20	Alan Niven	09/23/2022 13:46
MW-4	2209382-03	Water	09/22/2022 15:15	Alan Niven	09/23/2022 13:46
MW-5	2209382-04	Water	09/22/2022 14:05	Alan Niven	09/23/2022 13:46
MW-6	2209382-05	Water	09/22/2022 12:45	Alan Niven	09/23/2022 13:46
MW-10	2209382-06	Water	09/22/2022 11:30	Alan Niven	09/23/2022 13:46
BD-1	2209382-07	Water	09/22/2022 12:00	Alan Niven	09/23/2022 13:46

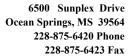
Environmental Management Services Project: Cooperative Energy CCR Semiannual

 PO Box 15369
 Project Number: SOU2-22-001
 Reported:

 Hattiesburg MS, 39404-5369
 Project Manager: Ken Ruckstuhl
 11/08/2022 12:31

Sample Receipt Conditions

Date/Time Received: 9/23/2022 1:46:00PM Shipped by: Client Delivery


Received by: Sarah E. Tomek Submitted by: Alan Niven

Date/Time Logged: 9/23/2022 2:33:00PM Logged by: Sarah E. Tomek

Cooler ID: #1104 Receipt Temperature: 0.8 °C

Yes Cooler Custody Seals Present No Received on Ice but Not Frozen Yes Containers Intact No Ice, Short Trip No COC/Labels Agree Yes **Obvious Contamination** No Labels Complete Rush to meet HT Yes No COC Complete Yes Received within HT Yes Volatile Vial Headspace >6mm Proper Containers for Analysis No Yes Correct Preservation Field Sheet/Instructions Included No Yes Samples Rejected/Documented in Log No Adequate Sample for Analysis Yes Temp Taken From Temp Blank Yes Sample Custody Seals Present No Temp Taken From Sample Container Samples Missing from COC/Cooler No No

Temp Taken From Cooler No
COC meets acceptance criteria Yes

Environmental Management Services Project: Cooperative Energy CCR Semiannual

 PO Box 15369
 Project Number: SOU2-22-001
 Reported:

 Hattiesburg MS, 39404-5369
 Project Manager: Ken Ruckstuhl
 11/08/2022 12:31

Cooler ID: #1134	_	Receipt Temperature: 1.4 °C	
Cooler Custody Seals Present	No	Received on Ice but Not Frozen	Yes
Containers Intact	Yes	No Ice, Short Trip	No
COC/Labels Agree	Yes	Obvious Contamination	No
Labels Complete	Yes	Rush to meet HT	No
COC Complete	Yes	Received within HT	Yes
Volatile Vial Headspace >6mm	No	Proper Containers for Analysis	Yes
Field Sheet/Instructions Included	No	Correct Preservation	Yes
Samples Rejected/Documented in Log	No	Adequate Sample for Analysis	Yes
Temp Taken From Temp Blank	Yes	Sample Custody Seals Present	No
Temp Taken From Sample Container	No	Samples Missing from COC/Cooler	No
Temp Taken From Cooler	No		
COC meets acceptance criteria	Yes		

Environmental Management Services

PO Box 15369

Hattiesburg MS, 39404-5369

Project: Cooperative Energy CCR Semiannual

Project Number: SOU2-22-001
Project Manager: Ken Ruckstuhl

Reported: 11/08/2022 12:31

CASE NARRATIVE SUMMARY

All reported results are within Micro-Methods Laboratory, Inc.defined laboratory quality control objectives unless detailed in narrative summary or identified as qualifications. NOTE: All results listed on this report are calculated on a wet weight basis (as received by the laboratory) unless otherwise noted in the analysis qualification sections.

Summary Comments:

See attached results from Sub-Contract Laboratory

Qualifiers: No Data Qualification

Analyte & Samples(s) Qualified: None

PO Box 15369 Hattiesburg MS, 39404-5369 Project: Cooperative Energy CCR Semiannual

Project Number: SOU2-22-001 Reported:
Project Manager: Ken Ruckstuhl 11/08/2022 12:31

MW-2

2209382-01 (Water)

							Date Time	Date Time		
Analyte	Result	MRL	Units	Dil	Batch	Analyst	Prepared	Analyzed	Method	Qualifiers
Classical Chemistry Parameters	3		·	·		·				
Fluoride	0.52	0.50	mg/L	1.0	2128028	ASC	09/28/2022 09:11	09/28/2022 09:31	SM 4500-F C 2011	
Total Dissolved Solids	565	1	"	"	2123013	DLW	09/23/2022 16:00	09/26/2022 00:00	SM 2540 C-2015	
Metals by EPA 200 Series Metho	ods ICP-AES									
Barium 455.403 [Radial]	0.025	0.010	mg/L	1.0	2127033	CLV	09/27/2022 12:30	09/28/2022 15:09	EPA 200.7 Rev 4.4	
Boron 249.773 [Radial]	0.863	0.050	"	"	"	CLV			"	
Calcium 315.887 [Radial]	56.6	0.250	"	5.0	"	CLV		09/28/2022 15:59	"	
Lithium 610.362 [Axial]	ND	0.040	"	1.0	"	CLV	•	09/28/2022 15:09	"	
Metals by EPA 200 Series Metho	ods ICP-MS [Analysis M	lode]							
Beryllium [He]	ND	0.00400	mg/L	1.0	2127032	GWG		09/30/2022 12:08	EPA 200.8 Rev 5.4	
Cobalt [He]	0.0729	0.00100	"	"	"	GWG			"	
Lead [He]	0.00234	0.00100	"	"	"	GWG			"	
Molybdenum [He]	ND	0.00500	"	"	"	GWG			m m	

PO Box 15369 Hattiesburg MS, 39404-5369 Project: Cooperative Energy CCR Semiannual

Project Number: SOU2-22-001 Reported:
Project Manager: Ken Ruckstuhl 11/08/2022 12:31

MW-3

2209382-02 (Water)

Analyte	Result	MRL	Units	Dil	Batch	Analyst	Date Time Prepared	Date Time Analyzed	Method	Qualifiers
Classical Chemistry Parame	eters									
Fluoride	ND	0.50	mg/L	1.0	2128028	ASC	09/28/2022 09:11	09/28/2022 09:31	SM 4500-F C 2011	
Total Dissolved Solids	3253	3	"	"	2123013	DLW	09/23/2022 16:00	09/26/2022 00:00	SM 2540 C-2015	
Metals by EPA 200 Series M	ethods ICP-AES									
Barium 455.403 [Radial]	0.042	0.010	mg/L	1.0	2127033	CLV	09/27/2022 12:30	09/28/2022 15:20	EPA 200.7 Rev 4.4	
Boron 249.773 [Radial]	7.38	0.050	"	"	"	CLV			"	
Calcium 315.887 [Radial]	416	1.00	"	20.0	"	CLV		09/28/2022 16:10	"	
Lithium 610.362 [Axial]	0.848	0.040	"	1.0	"	CLV		09/28/2022 15:20	"	
Metals by EPA 200 Series M	ethods ICP-MS [Analysis N	lode]							
Beryllium [He]	ND	0.00400	mg/L	1.0	2127032	GWG		09/30/2022 12:27	EPA 200.8 Rev 5.4	
Cobalt [He]	0.0249	0.00100	"	"	"	GWG			"	
Lead [He]	0.00540	0.00100	"	"	"	GWG			"	
Molybdenum [He]	ND	0.00500	"	u u	"	GWG			"	

PO Box 15369

Hattiesburg MS, 39404-5369

Project: Cooperative Energy CCR Semiannual

Project Number: SOU2-22-001
Project Manager: Ken Ruckstuhl

Reported:

11/08/2022 12:31

MW-4

2209382-03 (Water)

							Date Time	Date Time		
Analyte	Result	MRL	Units	Dil	Batch	Analyst	Prepared	Analyzed	Method	Qualifiers
Classical Chemistry Parameter	S			·	·					
Fluoride	ND	0.50	mg/L	1.0	2128028	ASC	09/28/2022 09:11	09/28/2022 09:31	SM 4500-F C 2011	
Total Dissolved Solids	3167	3	"	"	2123013	DLW	09/23/2022 16:00	09/26/2022 00:00	SM 2540 C-2015	
Metals by EPA 200 Series Meth	ods ICP-AES									
Barium 455.403 [Radial]	0.039	0.010	mg/L	1.0	2127033	CLV	09/27/2022 12:30	09/28/2022 15:23	EPA 200.7 Rev 4.4	
Boron 249.773 [Radial]	9.32	0.050	"	"	"	CLV			"	
Calcium 315.887 [Radial]	417	1.00	"	20.0	"	CLV		09/28/2022 16:13	"	
Lithium 610.362 [Axial]	1.01	0.040	"	1.0	"	CLV		09/28/2022 15:23	"	
Metals by EPA 200 Series Meth	ods ICP-MS [Analysis M	lode]							
Beryllium [He]	ND	0.00400	mg/L	1.0	2127032	GWG		09/30/2022 12:33	EPA 200.8 Rev 5.4	
Cobalt [He]	0.0378	0.00100	"	"	"	GWG			"	
Lead [He]	0.00152	0.00100	"	"	"	GWG			"	
Molybdenum [He]	ND	0.00500	"	"	"	GWG			n n	

Reported:

11/08/2022 12:31

Environmental Management Services

PO Box 15369

Hattiesburg MS, 39404-5369

Project: Cooperative Energy CCR Semiannual

Project Number: SOU2-22-001
Project Manager: Ken Ruckstuhl

MW-5

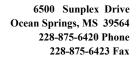
2209382-04 (Water)

Analyte	Result	MRL	Units	Dil	Batch	Analyst	Date Time Prepared	Date Time Analyzed	Method	Qualifiers
Classical Chemistry Paramete	ers									
Fluoride	ND	0.50	mg/L	1.0	2128028	ASC	09/28/2022 09:11	09/28/2022 09:31	SM 4500-F C 2011	
Total Dissolved Solids	4130	3	"	"	2123013	DLW	09/23/2022 16:00	09/26/2022 00:00	SM 2540 C-2015	
Metals by EPA 200 Series Met	hods ICP-AES									
Barium 455.403 [Radial]	0.061	0.010	mg/L	1.0	2127033	CLV	09/27/2022 12:30	09/28/2022 15:27	EPA 200.7 Rev 4.4	
Boron 249.773 [Radial]	12.7	0.050	"	"	"	CLV	"		"	
Calcium 315.887 [Radial]	588	1.00	"	20.0	"	CLV	"	09/28/2022 16:17	"	
Lithium 610.362 [Axial]	1.52	0.040	"	1.0	"	CLV		09/28/2022 15:27	u	
Metals by EPA 200 Series Met	hods ICP-MS [Analysis N	lode]							
Beryllium [He]	ND	0.00400	mg/L	1.0	2127032	GWG	**	09/30/2022 12:40	EPA 200.8 Rev 5.4	
Cobalt [He]	0.0109	0.00100	"	"	"	GWG			"	
Lead [He]	ND	0.00100	"	"	"	GWG			"	
Molybdenum [He]	2.00	0.00500	"	5.0	"	GWG	"	09/30/2022 13:05	"	

PO Box 15369 Hattiesburg MS, 39404-5369 Project: Cooperative Energy CCR Semiannual

Project Number: SOU2-22-001

Project Manager: Ken Ruckstuhl


Reported:

11/08/2022 12:31

MW-6

2209382-05 (Water)

					•		D-4-	D-4-		
							Date Time	Date Time		
Analyte	Result	MRL	Units	Dil	Batch	Analyst	Prepared	Analyzed	Method	Qualifiers
Classical Chemistry Parameters										
Fluoride	ND	0.50	mg/L	1.0	2128028	ASC	09/28/2022 09:11	09/28/2022 09:31	SM 4500-F C 2011	
Total Dissolved Solids	63	1	"	"	2123013	DLW	09/23/2022 16:00	09/26/2022 00:00	SM 2540 C-2015	
Metals by EPA 200 Series Metho	ds ICP-AES									
Barium 455.403 [Radial]	0.116	0.010	mg/L	1.0	2127033	CLV	09/27/2022 12:30	09/28/2022 15:30	EPA 200.7 Rev 4.4	
Boron 249.773 [Radial]	0.055	0.050	"	"	"	CLV				
Calcium 315.887 [Radial]	2.19	0.050	"	"	"	CLV				
Lithium 610.362 [Axial]	ND	0.040	"	"	"	CLV			"	
Metals by EPA 200 Series Metho	ds ICP-MS [Analysis N	lode]							
Beryllium [He]	ND	0.00400	mg/L	1.0	2127032	GWG	"	09/30/2022 12:46	EPA 200.8 Rev 5.4	
Cobalt [He]	0.00175	0.00100	"	"	"	GWG				
Lead [He]	ND	0.00100	"	"	"	GWG			"	
Molybdenum [He]	ND	0.00500	"	"	"	GWG			"	

PO Box 15369 Hattiesburg MS, 39404-5369 Project: Cooperative Energy CCR Semiannual

Project Number: SOU2-22-001
Project Manager: Ken Ruckstuhl

Reported: 11/08/2022 12:31

MW-10

2209382-06 (Water)

Analyta	Result	MRL	Units	Dil	Batch	Analyst	Date Time Prepared	Date Time Analyzed	Method	Qualifiers
Analyte	rvesuit	IVIIXL	Offics	DII	Daten	Allalyst	- Toparou	7 thatyzou	Metriou	Qualifiers
Classical Chemistry Parameters										
Fluoride	0.55	0.50	mg/L	1.0	2128028	ASC	09/28/2022 09:11	09/28/2022 09:31	SM 4500-F C 2011	
Total Dissolved Solids	1245	1	"	н	2123013	DLW	09/23/2022 16:00	09/26/2022 00:00	SM 2540 C-2015	
Metals by EPA 200 Series Method	ds ICP-AES									
Barium 455.403 [Radial]	0.024	0.010	mg/L	1.0	2127033	CLV	09/27/2022 12:30	09/28/2022 15:34	EPA 200.7 Rev 4.4	
Boron 249.773 [Radial]	4.16	0.050	"	"	"	CLV			"	
Calcium 315.887 [Radial]	81.3	0.250	"	5.0	"	CLV		09/28/2022 16:20	"	
Lithium 610.362 [Axial]	0.300	0.040	"	1.0	"	CLV		09/28/2022 15:34	"	
Metals by EPA 200 Series Method	ds ICP-MS [Analysis M	lode]							
Beryllium [He]	0.00953	0.00400	mg/L	1.0	2127032	GWG		09/30/2022 12:52	EPA 200.8 Rev 5.4	
Cobalt [He]	0.105	0.00100	"	"	"	GWG			•	
Lead [He]	0.00313	0.00100	"	"	"	GWG		•	•	
Molybdenum [He]	ND	0.00500	"	"	"	GWG			"	

Reported:

11/08/2022 12:31

Environmental Management Services

PO Box 15369

Hattiesburg MS, 39404-5369

Project: Cooperative Energy CCR Semiannual

Project Number: SOU2-22-001
Project Manager: Ken Ruckstuhl

BD-1

2209382-07 (Water)

Analyte	Result	MRL	Units	Dil	Batch	Analyst	Date Time Prepared	Date Time Analyzed	Method	Qualifiers
Classical Chemistry Parameters	i									
Fluoride	ND	0.50	mg/L	1.0	2128028	ASC	09/28/2022 09:11	09/28/2022 09:31	SM 4500-F C 2011	
Total Dissolved Solids	3140	3	"	"	2123013	DLW	09/23/2022 16:00	09/26/2022 00:00	SM 2540 C-2015	
Metals by EPA 200 Series Metho	ds ICP-AES									
Barium 455.403 [Radial]	0.043	0.010	mg/L	1.0	2127033	CLV	09/27/2022 12:30	09/28/2022 15:38	EPA 200.7 Rev 4.4	
Boron 249.773 [Radial]	9.55	0.050	"	"	"	CLV			"	
Calcium 315.887 [Radial]	398	1.00	"	20.0	"	CLV		09/28/2022 16:24	"	
Lithium 610.362 [Axial]	0.884	0.040	"	1.0	"	CLV		09/28/2022 15:38	m .	
Metals by EPA 200 Series Metho	ds ICP-MS [Analysis N	lode]							
Beryllium [He]	ND	0.00400	mg/L	1.0	2127032	GWG		09/30/2022 12:58	EPA 200.8 Rev 5.4	
Cobalt [He]	0.0363	0.00100	"	"	"	GWG			"	
Lead [He]	0.00142	0.00100	"	"	"	GWG			"	
Molybdenum [He]	ND	0.00500	"	"	"	GWG			н	

PO Box 15369

Hattiesburg MS, 39404-5369

Project: Cooperative Energy CCR Semiannual

Project Number: SOU2-22-001
Project Manager: Ken Ruckstuhl

Reported: 11/08/2022 12:31

Classical Chemistry Parameters - Quality Control

Analyte	Analyzed	Result	MRL	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Qualifiers
Batch 2l23013 - Default Prep Gen	Chem										
Blank (2I23013-BLK1)											
Total Dissolved Solids	9/26/22 0:00	ND	1	mg/L							
LCS (2I23013-BS1)											
Total Dissolved Solids	9/26/22 0:00	114	1	mg/L	150		76.0	65-105			
LCS Dup (2l23013-BSD1)											
Total Dissolved Solids	9/26/22 0:00	117	1	mg/L	150		78.0	65-105	2.60	15	
Duplicate (2I23013-DUP1)			Source: 22093	335-01							
Total Dissolved Solids	9/26/22 0:00	450	1	mg/L		443			1.57	10	
Duplicate (2I23013-DUP2)			Source: 22093	882-05							
Total Dissolved Solids	9/26/22 0:00	66	1	mg/L		63			4.65	10	
Batch 2l28028 - Default Prep Gen	Chem										
Blank (2I28028-BLK1)											
Fluoride	9/28/22 9:31	ND	0.50	mg/L							
LCS (2128028-BS1)											
Fluoride	9/28/22 9:31	2.02	0.50	mg/L	2.00		101	83.3-107			
LCS Dup (2l28028-BSD1)											
Fluoride	9/28/22 9:31	2.04	0.50	mg/L	2.00		102	83.3-107	0.985	30	
Duplicate (2I28028-DUP1)			Source: 22093	882-01							
Fluoride	9/28/22 9:31	0.52	0.50	mg/L		0.52			0.768	20	

Reported:

11/08/2022 12:31

Environmental Management Services

PO Box 15369

Hattiesburg MS, 39404-5369

Project: Cooperative Energy CCR Semiannual

Project Number: SOU2-22-001
Project Manager: Ken Ruckstuhl

Classical Chemistry Parameters - Quality Control

Analyte	Analyzed	Result	MRL	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Qualifiers
Batch 2l28028 - Default Prep	o GenChem										
Matrix Spike (2l28028-MS1)			Source: 22093	82-01							
Fluoride	9/28/22 9:31	2.18	0.50	mg/L	2.00	0.52	82.9	79.3-113			
Matrix Spike Dup (2128028-N	/ISD1)		Source: 22093	82-01							
Fluoride	9/28/22 9:31	2.18	0.50	mg/L	2.00	0.52	82.9	79.3-113	0.00	30	

PO Box 15369 Hattiesburg MS, 39404-5369 Project: Cooperative Energy CCR Semiannual

Project Number: SOU2-22-001
Project Manager: Ken Ruckstuhl

Reported: 11/08/2022 12:31

Metals by EPA 200 Series Methods ICP-AES - Quality Control

Analyte	Analyzed	Result	MRL	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Qualifiers
Batch 2I27033 - EPA 200.2 DCN 10	17 Rev 10										
Blank (2I27033-BLK1)											
Barium 455.403 [Radial]	9/28/22 14:47	ND	0.010	mg/L							
Barium 493.409 [Radial]	9/28/22 14:47	ND	0.010								
Boron 249.773 [Radial]	9/28/22 14:47	ND	0.050								
Calcium 315.887 [Radial]	9/28/22 14:47	ND	0.050								
Lithium 610.362 [Axial]	9/28/22 14:47	ND	0.040								
LCS (2127033-BS1)											
Barium 493.409 [Radial]	9/28/22 14:51	0.213	0.010	mg/L	0.200		106	85-115			
Barium 455.403 [Radial]	9/28/22 14:51	0.212	0.010		0.200		106	85-115			
Boron 249.773 [Radial]	9/28/22 14:51	0.214	0.050		0.200		107	85-115			
Calcium 315.887 [Radial]	9/28/22 14:51	0.199	0.050		0.200		99.3	85-115			
Lithium 610.362 [Axial]	9/28/22 14:51	0.201	0.040		0.200		100	85-115			
LCS Dup (2127033-BSD1)											
Barium 493.409 [Radial]	9/28/22 14:54	0.211	0.010	mg/L	0.200		106	85-115	0.707	20	
Barium 455.403 [Radial]	9/28/22 14:54	0.210	0.010		0.200		105	85-115	0.942	20	
Boron 249.773 [Radial]	9/28/22 14:54	0.211	0.050		0.200		105	85-115	1.81	20	
Calcium 315.887 [Radial]	9/28/22 14:54	0.196	0.050		0.200		98.1	85-115	1.20	20	
Lithium 610.362 [Axial]	9/28/22 14:54	0.201	0.040		0.200		100	85-115	0.208	20	
Duplicate (2l27033-DUP1)			Source: 22093	382-01							
Calcium 315.887 [Radial]	9/28/22 16:02	59.1	0.250	mg/L		56.6			4.40	20	
Matrix Spike (2I27033-MS1)			Source: 22093	382-01							
Barium 455.403 [Radial]	9/28/22 15:12	0.238	0.010	mg/L	0.200	0.025	107	70-130			
Barium 493.409 [Radial]	9/28/22 15:12	0.237	0.010		0.200	0.021	108	70-130			
Boron 249.773 [Radial]	9/28/22 15:12	1.08	0.050		0.200	0.863	107	70-130			
Lithium 610.362 [Axial]	9/28/22 15:12	0.213	0.040		0.200	0.033	90.0	70-130			

Project: Cooperative Energy CCR Semiannual

PO Box 15369 Hattiesburg MS, 39404-5369 Project Number: SOU2-22-001
Project Manager: Ken Ruckstuhl

Reported: 11/08/2022 12:31

Metals by EPA 200 Series Methods ICP-AES - Quality Control

Analyte	Analyzed	Result	MRL	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Qualifiers
Batch 2l27033 - EPA 200.2 DCN 1	017 Rev 10										
Matrix Spike Dup (2l27033-MSD1))		Source: 22093	82-01							
Barium 455.403 [Radial]	9/28/22 15:16	0.240	0.010	mg/L	0.200	0.025	107	70-130	0.730	20	
Barium 493.409 [Radial]	9/28/22 15:16	0.239	0.010		0.200	0.021	109	70-130	0.902	20	
Boron 249.773 [Radial]	9/28/22 15:16	1.09	0.050		0.200	0.863	112	70-130	1.02	20	
Lithium 610.362 [Axial]	9/28/22 15:16	0.202	0.040		0.200	0.033	84.4	70-130	5.45	20	

Project: Cooperative Energy CCR Semiannual

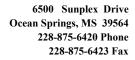
PO Box 15369 Hattiesburg MS, 39404-5369 Project Number: SOU2-22-001
Project Manager: Ken Ruckstuhl

Reported: 11/08/2022 12:31

Metals by EPA 200 Series Methods ICP-MS [Analysis Mode] - Quality Control

Analyte	Analyzed	Result	MRL	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Qualifiers
Batch 2I27032 - EPA 200.2 DCN	1017 Rev 10										
Blank (2I27032-BLK1)											
Antimony [He]	9/30/22 11:50	ND	0.00200	mg/L							
Arsenic [NG]	9/30/22 11:50	ND	0.00200								
Beryllium [He]	9/30/22 11:50	ND	0.00400								
Cadmium [He]	9/30/22 11:50	ND	0.00500								
Chromium [He]	9/30/22 11:50	ND	0.0100								
Cobalt [He]	9/30/22 11:50	ND	0.00100								
Lead [He]	9/30/22 11:50	ND	0.00100								
Molybdenum [He]	9/30/22 11:50	ND	0.00500								
Nickel [He]	9/30/22 11:50	ND	0.00100								
Selenium [NG]	9/30/22 11:50	ND	0.0500								
LCS (2127032-BS1)											
Antimony [He]	9/30/22 11:56	0.105	0.00200	mg/L	0.100		105	85-115			
Arsenic [NG]	9/30/22 11:56	0.102	0.00200		0.100		102	85-115			
Beryllium [He]	9/30/22 11:56	0.105	0.00100		0.100		105	85-115			
Cadmium [He]	9/30/22 11:56	0.106	0.00100		0.100		106	85-115			
Chromium [He]	9/30/22 11:56	0.104	0.00100		0.100		104	85-115			
Cobalt [He]	9/30/22 11:56	0.105	0.00100		0.100		105	85-115			
Lead [He]	9/30/22 11:56	0.105	0.00100		0.100		105	85-115			
Molybdenum [He]	9/30/22 11:56	0.103	0.00100		0.100		103	85-115			
Nickel [He]	9/30/22 11:56	0.107	0.00100		0.100		107	85-115			
Selenium [NG]	9/30/22 11:56	0.104	0.00500		0.100		104	85-115			
LCS Dup (2l27032-BSD1)											
Antimony [He]	9/30/22 12:02	0.105	0.00200	mg/L	0.100		105	85-115	0.489	20	
Arsenic [NG]	9/30/22 12:02	0.100	0.00200		0.100		100	85-115	2.16	20	
Beryllium [He]	9/30/22 12:02	0.107	0.00100	"	0.100		107	85-115	1.86	20	
Cadmium [He]	9/30/22 12:02	0.104	0.00100		0.100		104	85-115	1.58	20	
Chromium [He]	9/30/22 12:02	0.103	0.00100		0.100		103	85-115	0.808	20	
Cobalt [He]	9/30/22 12:02	0.104	0.00100		0.100		104	85-115	1.48	20	
Lead [He]	9/30/22 12:02	0.103	0.00100	"	0.100		103	85-115	1.73	20	
Molybdenum [He]	9/30/22 12:02	0.103	0.00100		0.100		103	85-115	0.573	20	
Nickel [He]	9/30/22 12:02	0.106	0.00100		0.100		106	85-115	1.05	20	
Selenium [NG]	9/30/22 12:02	0.101	0.00500		0.100		101	85-115	3.26	20	

PO Box 15369


Hattiesburg MS, 39404-5369

Project: Cooperative Energy CCR Semiannual

Project Number: SOU2-22-001 Reported:
Project Manager: Ken Ruckstuhl 11/08/2022 12:31

Metals by EPA 200 Series Methods ICP-MS [Analysis Mode] - Quality Control

Paragram	Analyte	Analyzed	Result	MRL	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Qualifiers
Paragram	Batch 2I27032 - EPA 200.2 DCN	1017 Rev 10										
Contact Fiel	Matrix Spike (2l27032-MS1)			Source: 22093	82-01							
Contact Property Secure Contact Cont	Beryllium [He]	9/30/22 12:14	0.110	0.00100	mg/L	0.100	0.004	107	70-130			
September He	Cobalt [He]	9/30/22 12:14	0.177	0.00100	"	0.100	0.073	104	70-130			
Native Spike (2877932-MS2) Source: 2209383-01	Lead [He]	9/30/22 12:14	0.105	0.00100	"	0.100	0.002	103	70-130			
Antimory [He] 9/30/22 12:14 0.107 0.00200 mg/L 0.100 ND 107 70-130 Avaenic [NG] 9/30/22 12:14 0.110 0.00200 * 0.100 ND 99.9 70-130 Admition [He] 9/30/22 12:14 0.110 0.00100 * 0.100 0.004 107 70-130 Admition [He] 9/30/22 12:14 0.105 0.00100 * 0.100 0.0004 104 70-130 Admition [He] 9/30/22 12:14 0.105 0.00100 * 0.100 0.0006 101 70-130 Admition [He] 9/30/22 12:14 0.105 0.00100 * 0.100 0.0006 101 70-130 Admition [He] 9/30/22 12:14 0.105 0.00100 * 0.100 0.0020 103 70-130 Admitis Spike Dup (2127032-MSD1) Source: 2209382-01 Source: 2209382-01 Admitis Spike Dup (2127032-MSD1) Source: 2209383-01 Admitis Spike Dup (2127032-MSD2) Admitis Spike Du	Molybdenum [He]	9/30/22 12:14	0.107	0.00100		0.100	ND	107	70-130			
Assertic [NG] 9/30/22 12:14 0.100 0.00200 * 0.100 ND 99.9 70-130 Assertic [NG] 9/30/22 12:14 0.110 0.00100 * 0.100 0.0004 107 70-130 Assertic [NG] 9/30/22 12:14 0.105 0.00100 * 0.100 0.0004 104 70-130 Assertic [NG] 9/30/22 12:14 0.105 0.00100 * 0.100 0.0006 101 70-130 Assertic [NG] 9/30/22 12:14 0.105 0.00100 * 0.100 0.0006 101 70-130 Assertic [NG] 9/30/22 12:14 0.105 0.00100 * 0.100 0.0020 95.8 70-130 Assertic [NG] 9/30/22 12:14 0.116 0.00500 * 0.100 0.0020 95.8 70-130 Assertic [NG] 9/30/22 12:14 0.116 0.00500 * 0.100 0.0050 101 70-130 Assertic [NG] 9/30/22 12:14 0.116 0.00500 * 0.100 0.005 101 70-130 Assertic [NG] 9/30/22 12:14 0.116 0.00500 * 0.100 0.005 101 70-130 Assertic [NG] 9/30/22 12:14 0.107 0.00100 * 0.100 0.004 104 70-130 2.75 20 Assertic [NG] 9/30/22 12:11 0.104 0.00100 * 0.100 0.002 99.2 70-130 3.21 20 Assertic [NG] 9/30/22 12:11 0.104 0.00100 * 0.100 ND 104 70-130 2.90 20 Assertic [NG] 9/30/22 12:11 0.104 0.00200 * 0.0020 * 0.100 ND 104 70-130 3.39 20 Assertic [NG] 9/30/22 12:1 0.107 0.00100 * 0.0000 ND 95.9 70-130 3.21 20 Assertic [NG] 9/30/22 12:1 0.107 0.00100 * 0.0000 ND 95.9 70-130 3.21 20 Assertic [NG] 9/30/22 12:1 0.107 0.00100 * 0.100 0.0004 104 70-130 3.39 20 Assertic [NG] 9/30/22 12:1 0.107 0.00100 * 0.100 0.0004 104 70-130 3.21 20 Assertic [NG] 9/30/22 12:1 0.101 0.00100 * 0.100 0.0004 104 70-130 3.21 20 Assertic [NG] 9/30/22 12:1 0.101 0.00100 * 0.100 0.0004 104 70-130 3.21 20 Assertic [NG] 9/30/22 12:1 0.101 0.00100 * 0.100 0.0004 104 70-130 3.21 20 Assertic [NG] 9/30/22 12:1 0.101 0.00100 * 0.100 0.0006 98.2 70-130 3.21 20 Assertic [NG] 9/30/22 12:1 0.101 0.00100 * 0.100 0.0006 98.2 70-130 3.21 20 Assertic [NG] 9/30/22 12:1 0.102 0.00100 * 0.100 0.0006 98.2 70-130 3.21 20 Assertic [NG] 9/30/22 12:1 0.102 0.00100 * 0.100 0.0006 98.2 70-130 3.21 20 Assertic [NG] 9/30/22 12:1 0.102 0.00100 * 0.100 0.0006 98.2 70-130 3.21 20 Assertic [NG] 9/30/22 12:1 0.102 0.00100 * 0.100 0.0002 99.2 70-130 3.21 20 Assertic [NG] 9/30/22 12:1 0.102 0.00100 * 0.100 0.0002 99.2	Matrix Spike (2l27032-MS2)			Source: 22093	83-01							
Selentium [He] 9/30/22 12:14 0.110 0.00100 * 0.100 0.004 107 70-130 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5	Antimony [He]	9/30/22 12:14	0.107	0.00200	mg/L	0.100	ND	107	70-130			
Carmium [He]	Arsenic [NG]	9/30/22 12:14	0.100	0.00200		0.100	ND	99.9	70-130			
Chromium [He] 9/30/22 12:14 0.101 0.00100 * 0.100 0.0006 101 70-130 1.00100 * 0.100 0.002 103 70-130 1.00100 * 0.100 0.002 103 70-130 1.00100 * 0.100 0.002 103 70-130 1.00100 * 0.100 0.002 103 70-130 1.00100 * 0.100 0.002 103 70-130 1.00100 * 0.100 0.002 103 70-130 1.00100 * 0.100 0.002 103 70-130 1.00100 * 0.100 0.0015 101 70-130 1.00100 * 0.100 0.0015 101 70-130 1.00100 * 0.100 0.0015 101 70-130 1.00100 * 0.100 0.0015 101 70-130 1.00100 * 0.100 0.0015 101 70-130 1.00100 * 0.100 0.0015 101 70-130 1.00100 * 0.100 0.0015 101 70-130 1.00100 * 0.100 0.0015 101 70-130 1.00100 * 0.100 0.0015 101 70-130 1.00100 * 0.100 0.0015 101 70-130 1.00100 * 0.100 0.0015 101 70-130 1.00100 * 0.100 0.0015 101 70-130 1.00100 * 0.100 0.0015 101 70-130 1.00100 * 0.100 0.0015 101 70-130 1.00100 * 0.100 0.0015 101 70-130 1.00100 * 0.100 0.0015 101 70-130 1.00100 * 0.100 0.0015 101 70-130 1.00100 * 0.100 0.0015 101 70-130 1.00100 * 0.100 0.0015 101 70-130 1.00100 * 0.100100 0.00100 * 0.10000 0.00100 * 0.100000 * 0.10000000 * 0.10000000000	Beryllium [He]	9/30/22 12:14	0.110	0.00100		0.100	0.004	107	70-130			
Seed He 9/30/22 12:14	Cadmium [He]	9/30/22 12:14	0.105	0.00100		0.100	0.0004	104	70-130			
Native [He] 9/30/22 12:14 0.127 0.00100 * 0.100 0.032 95.8 70-130 Matrix Spike Dup (2127032-MSD1) Serplium [He] 9/30/22 12:21 0.107 0.00100 mg/L 0.100 0.004 104 70-130 2.75 20 Cobalt [He] 9/30/22 12:21 0.102 0.00100 * 0.100 0.002 99.2 70-130 3.21 20 Matrix Spike Dup (2127032-MSD2) Source: 2209383-01	Chromium [He]	9/30/22 12:14	0.101	0.00100		0.100	0.0006	101	70-130			
Selenium [NG] 9/30/22 12:14 0.116 0.00500 " 0.100 0.015 101 70-130 Matrix Spike Dup (2127032-MSD1) Source: 2209382-01 Seryllum [He] 9/30/22 12:21 0.107 0.00100 mg/L 0.100 0.004 104 70-130 2.75 20 Cobalt [He] 9/30/22 12:21 0.174 0.00100 " 0.100 0.002 99.2 70-130 3.21 20 Molybdenum [He] 9/30/22 12:21 0.104 0.00100 " 0.100 ND 104 70-130 2.90 20 Matrix Spike Dup (2127032-MSD2) Source: 2209383-01 Antimony [He] 9/30/22 12:21 0.104 0.00200 mg/L 0.100 ND 104 70-130 3.39 20 Antimony [He] 9/30/22 12:21 0.0096 0.00200 " 0.100 ND 95.9 70-130 4.13 20 Seryllum [He] 9/30/22 12:21 0.0107 0.00100 " 0.100 ND 95.9 70-130 4.13 20 Seryllum [He] 9/30/22 12:21 0.107 0.00100 " 0.100 ND 95.9 70-130 4.13 20 Cadmium [He] 9/30/22 12:21 0.101 0.00100 " 0.100 0.004 104 70-130 2.75 20 Cadmium [He] 9/30/22 12:21 0.101 0.00100 " 0.100 0.004 104 70-130 3.21 20 Chromium [He] 9/30/22 12:21 0.009 0.00100 " 0.100 0.0004 101 70-130 3.21 20 Chromium [He] 9/30/22 12:21 0.009 0.00100 " 0.100 0.0006 98.2 70-130 3.21 20 Chromium [He] 9/30/22 12:21 0.010 0.0000 " 0.000 0.0006 98.2 70-130 3.21 20 Chromium [He] 9/30/22 12:21 0.102 0.00100 " 0.100 0.0006 98.2 70-130 3.21 20 Chromium [He] 9/30/22 12:21 0.102 0.00100 " 0.100 0.0006 98.2 70-130 3.21 20 Chromium [He] 9/30/22 12:21 0.102 0.00100 " 0.100 0.0006 98.2 70-130 3.21 20 Chromium [He] 9/30/22 12:21 0.102 0.00100 " 0.100 0.0006 98.2 70-130 3.21 20 Chromium [He] 9/30/22 12:21 0.102 0.00100 " 0.100 0.0006 98.2 70-130 3.21 20 Chromium [He] 9/30/22 12:21 0.102 0.00100 " 0.100 0.0006 98.2 70-130 3.21 20 Chromium [He] 9/30/22 12:21 0.102 0.00100 " 0.100 0.0006 98.2 70-130 3.21 20 Chromium [He] 9/30/22 12:21 0.103 0.00100 " 0.100 0.000 0.002 99.2 70-130 3.21 20 Chromium [He] 9/30/22 12:21 0.103 0.00100 " 0.100 0.000	Lead [He]	9/30/22 12:14	0.105	0.00100		0.100	0.002	103	70-130			
Source: 2209382-01 Source: 2209383-01 Source:	Nickel [He]	9/30/22 12:14	0.127	0.00100		0.100	0.032	95.8	70-130			
Seryllium [He] 9/30/22 12:21 0.107 0.00100 mg/L 0.100 0.004 104 70-130 2.75 20 Cobalt [He] 9/30/22 12:21 0.174 0.00100 " 0.100 0.073 101 70-130 1.48 20 Lead [He] 9/30/22 12:21 0.102 0.00100 " 0.100 0.002 99.2 70-130 3.21 20 Molybdenum [He] 9/30/22 12:21 0.104 0.00100 " 0.100 ND 104 70-130 2.90 20 Matrix Spike Dup (2!27032-MSD2) Source: 2209383-01 Antimony [He] 9/30/22 12:21 0.104 0.00200 mg/L 0.100 ND 104 70-130 3.39 20 Arsenic [NG] 9/30/22 12:21 0.096 0.00200 " 0.100 ND 95.9 70-130 4.13 20 Seryllium [He] 9/30/22 12:21 0.107 0.00100 " 0.100 ND 95.9 70-130 4.13 20 Cadmium [He] 9/30/22 12:21 0.101 0.00100 " 0.100 0.004 104 70-130 2.75 20 Cadmium [He] 9/30/22 12:21 0.101 0.00100 " 0.100 0.0004 101 70-130 3.21 20 Chromium [He] 9/30/22 12:21 0.099 0.00100 " 0.100 0.0006 98.2 70-130 2.62 20 Lead [He] 9/30/22 12:21 0.102 0.00100 " 0.100 0.002 99.2 70-130 3.21 20 Selekel [He] 9/30/22 12:21 0.102 0.00100 " 0.100 0.002 99.2 70-130 3.21 20 Selekel [He] 9/30/22 12:21 0.102 0.00100 " 0.100 0.002 99.2 70-130 3.21 20	Selenium [NG]	9/30/22 12:14	0.116	0.00500		0.100	0.015	101	70-130			
Cobalt [He] 9/30/22 12:21 0.174 0.00100 " 0.100 0.073 101 70-130 1.48 20 Lead [He] 9/30/22 12:21 0.102 0.00100 " 0.100 0.002 99.2 70-130 3.21 20 Molybdenum [He] 9/30/22 12:21 0.104 0.00100 " 0.100 ND 104 70-130 2.90 20 Matrix Spike Dup (2127032-MSD2) Source: 2209383-01 Antimony [He] 9/30/22 12:21 0.104 0.00200 mg/L 0.100 ND 104 70-130 3.39 20 Arsenic [NG] 9/30/22 12:21 0.096 0.00200 " 0.100 ND 95.9 70-130 4.13 20 Beryllium [He] 9/30/22 12:21 0.107 0.00100 " 0.100 ND 95.9 70-130 4.13 20 Cadmium [He] 9/30/22 12:21 0.101 0.00100 " 0.100 0.004 104 70-130 2.75 20 Cadmium [He] 9/30/22 12:21 0.101 0.00100 " 0.100 0.0004 101 70-130 3.21 20 Chromium [He] 9/30/22 12:21 0.102 0.00100 " 0.100 0.0006 98.2 70-130 3.21 20 Cheed [He] 9/30/22 12:21 0.102 0.00100 " 0.100 0.002 99.2 70-130 3.21 20 Cheed [He] 9/30/22 12:21 0.102 0.00100 " 0.100 0.002 99.2 70-130 3.21 20 Cheed [He] 9/30/22 12:21 0.102 0.00100 " 0.100 0.002 99.2 70-130 3.21 20 Cheed [He] 9/30/22 12:21 0.102 0.00100 " 0.100 0.002 99.2 70-130 3.21 20 Cheed [He] 9/30/22 12:21 0.102 0.00100 " 0.100 0.002 99.2 70-130 3.21 20 Cheed [He] 9/30/22 12:21 0.102 0.00100 " 0.100 0.002 99.2 70-130 3.21 20	Matrix Spike Dup (2I27032-MSD	1)		Source: 22093	82-01							
Lead [He] 9/30/22 12:21 0.102 0.00100 " 0.100 0.002 99.2 70-130 3.21 20 Molybdenum [He] 9/30/22 12:21 0.104 0.00100 " 0.100 ND 104 70-130 2.90 20 Matrix Spike Dup (2127032-MSD2) Source: 2209383-01 Antimony [He] 9/30/22 12:21 0.104 0.00200 mg/L 0.100 ND 104 70-130 3.39 20 Arsenic [NG] 9/30/22 12:21 0.096 0.00200 " 0.100 ND 95.9 70-130 4.13 20 Arsenic [NG] 9/30/22 12:21 0.107 0.00100 " 0.100 0.004 104 70-130 2.75 20 Arsenic [NG] 9/30/22 12:21 0.101 0.00100 " 0.100 0.004 104 70-130 3.21 20 Arsenic [NG] 9/30/22 12:21 0.101 0.00100 " 0.100 0.0004 101 70-130 3.21 20 Arsenic [NG] 9/30/22 12:21 0.101 0.00100 " 0.100 0.0004 101 70-130 3.21 20 Arsenic [NG] 9/30/22 12:21 0.102 0.00100 " 0.100 0.0006 98.2 70-130 3.21 20 Arsenic [NG] 9/30/22 12:21 0.102 0.00100 " 0.100 0.002 99.2 70-130 3.21 20 Arsenic [NG] 9/30/22 12:21 0.102 0.00100 " 0.100 0.002 99.2 70-130 3.21 20 Arsenic [NG] 9/30/22 12:21 0.102 0.00100 " 0.100 0.002 99.2 70-130 3.21 20 Arsenic [NG] 9/30/22 12:21 0.102 0.00100 " 0.100 0.002 99.2 70-130 3.21 20 Arsenic [NG] 9/30/22 12:21 0.102 0.00100 " 0.100 0.002 99.2 70-130 3.21 20 Arsenic [NG] 9/30/22 12:21 0.102 0.00100 " 0.100 0.002 99.2 70-130 3.21 20 Arsenic [NG] 9/30/22 12:21 0.102 0.00100 " 0.100 0.002 99.2 70-130 3.21 20 Arsenic [NG] 9/30/22 12:21 0.102 0.00100 " 0.100 0.002 99.2 70-130 3.21 20 Arsenic [NG] 9/30/22 12:21 0.102 0.00100 " 0.100 0.002 99.2 70-130 3.21 20 Arsenic [NG] 9/30/22 12:21 0.102 0.102 0.00100 " 0.100 0.002 99.2 70-130 3.21 20 Arsenic [NG] 9/30/22 12:21 0.102 0.102 0.00100 " 0.100 0.002 99.2 70-130 3.21 20 Arsenic [NG] 9/30/22 12:21 0.102 0.102 0.00100 " 0.100 0.002 99.2 70-130 3.21 20 Arsenic [NG] 9/30/22 12:21 0.102 0.102 0.00100 " 0.100 0.002 99.2 70-130 3.21 20 Arsenic [NG] 9/30/22 12:21 0.102	Beryllium [He]	9/30/22 12:21	0.107	0.00100	mg/L	0.100	0.004	104	70-130	2.75	20	
Molybdenum [He] 9/30/22 12:21 0.104 0.00100 " 0.100 ND 104 70-130 2.90 20 Matrix Spike Dup (2127032-MSD2) Source: 2209383-01 Antimony [He] 9/30/22 12:21 0.104 0.00200 mg/L 0.100 ND 104 70-130 3.39 20 Arsenic [NG] 9/30/22 12:21 0.096 0.00200 " 0.100 ND 95.9 70-130 4.13 20 Beryllium [He] 9/30/22 12:21 0.107 0.00100 " 0.100 0.004 104 70-130 2.75 20 Cadmium [He] 9/30/22 12:21 0.101 0.00100 " 0.100 0.0004 101 70-130 3.21 20 Chromium [He] 9/30/22 12:21 0.099 0.00100 " 0.100 0.0006 98.2 70-130 3.21 20 Lead [He] 9/30/22 12:21 0.102 0.00100 " 0.100 0.002 99.2 70-130 3.21 20 ND 104 70-130 3.39 20 Arsenic [NG] 9/30/22 12:21 0.101 0.00100 " 0.100 0.0004 101 70-130 3.21 20 Chromium [He] 9/30/22 12:21 0.102 0.00100 " 0.100 0.002 99.2 70-130 3.21 20 ND 104 70-130 3.39 20	Cobalt [He]	9/30/22 12:21	0.174	0.00100		0.100	0.073	101	70-130	1.48	20	
Matrix Spike Dup (2127032-MSD2) Antimony [He] 9/30/22 12:21 0.104 0.00200 mg/L 0.100 ND 104 70-130 3.39 20 Arsenic [NG] 9/30/22 12:21 0.096 0.00200 " 0.100 ND 95.9 70-130 4.13 20 Seryllium [He] 9/30/22 12:21 0.107 0.00100 " 0.100 0.004 104 70-130 2.75 20 Cadmium [He] 9/30/22 12:21 0.101 0.00100 " 0.100 0.0004 101 70-130 3.21 20 Chromium [He] 9/30/22 12:21 0.099 0.00100 " 0.100 0.0006 98.2 70-130 3.21 20 Lead [He] 9/30/22 12:21 0.102 0.00100 " 0.100 0.002 99.2 70-130 3.21 20 Lead [He] 9/30/22 12:21 0.103 0.00100 " 0.100 0.002 99.2 70-130 3.21 20 Likele [He] 9/30/22 12:21 0.123 0.00100 " 0.100 0.032 91.1 70-130 3.79 20	Lead [He]	9/30/22 12:21	0.102	0.00100		0.100	0.002	99.2	70-130	3.21	20	
Antimony [He] 9/30/22 12:21 0.104 0.00200 mg/L 0.100 ND 104 70-130 3.39 20 Arsenic [NG] 9/30/22 12:21 0.096 0.00200 " 0.100 ND 95.9 70-130 4.13 20 Beryllium [He] 9/30/22 12:21 0.107 0.00100 " 0.100 0.004 104 70-130 2.75 20 Cadmium [He] 9/30/22 12:21 0.101 0.00100 " 0.100 0.0004 101 70-130 3.21 20 Chromium [He] 9/30/22 12:21 0.099 0.00100 " 0.100 0.0006 98.2 70-130 3.21 20 Lead [He] 9/30/22 12:21 0.102 0.00100 " 0.100 0.002 99.2 70-130 3.21 20 Lead [He] 9/30/22 12:21 0.123 0.00100 " 0.100 0.002 99.2 70-130 3.21 20 Likele [He] 9/30/22 12:21 0.123 0.00100 " 0.100 0.032 91.1 70-130 3.79 20	Molybdenum [He]	9/30/22 12:21	0.104	0.00100		0.100	ND	104	70-130	2.90	20	
Arsenic [NG] 9/30/22 12:21 0.096 0.00200 " 0.100 ND 95.9 70-130 4.13 20 Seryllium [He] 9/30/22 12:21 0.107 0.00100 " 0.100 0.004 104 70-130 2.75 20 Cadmium [He] 9/30/22 12:21 0.101 0.00100 " 0.100 0.0004 101 70-130 3.21 20 Chromium [He] 9/30/22 12:21 0.099 0.00100 " 0.100 0.0006 98.2 70-130 2.62 20 Lead [He] 9/30/22 12:21 0.102 0.00100 " 0.100 0.002 99.2 70-130 3.21 20 Nickel [He] 9/30/22 12:21 0.123 0.00100 " 0.100 0.032 91.1 70-130 3.79 20	Matrix Spike Dup (2I27032-MSD	2)		Source: 22093	83-01							
Seryllium [He] 9/30/22 12:21 0.107 0.00100 " 0.100 0.004 104 70-130 2.75 20 Cadmium [He] 9/30/22 12:21 0.101 0.00100 " 0.100 0.0004 101 70-130 3.21 20 Chromium [He] 9/30/22 12:21 0.099 0.00100 " 0.100 0.0006 98.2 70-130 2.62 20 Chead [He] 9/30/22 12:21 0.102 0.00100 " 0.100 0.002 99.2 70-130 3.21 20 Chromium [He] 9/30/22 12:21 0.102 0.00100 " 0.100 0.002 99.2 70-130 3.21 20 Chromium [He] 9/30/22 12:21 0.123 0.00100 " 0.100 0.002 99.2 70-130 3.21 20 Chromium [He] 9/30/22 12:21 0.123 0.00100 " 0.100 0.002 99.2 70-130 3.79 20 Chromium [He] 9/30/22 12:21 0.123 0.00100 " 0.100 0.002 99.2 70-130 3.79 20 Chromium [He] 9/30/22 12:21 0.123 0.00100 " 0.100 0.002 99.2 70-130 3.79 20 Chromium [He] 9/30/22 12:21 0.123 0.00100 " 0.100 0.002 99.2 70-130 3.79 20 Chromium [He] 9/30/22 12:21 0.123 0.00100 " 0.100 0.002 99.2 70-130 3.79 20 Chromium [He] 9/30/22 12:21 0.123 0.00100 " 0.100 0.002 99.2 70-130 3.79 20 Chromium [He] 9/30/22 12:21 0.123 0.00100 " 0.100 0.002 99.2 70-130 3.79 20 Chromium [He] 9/30/22 12:21 0.123 0.00100 " 0.100 0.002 99.2 70-130 3.79 20 Chromium [He] 9/30/22 12:21 0.102 0.00100 " 0.100 0.002 99.2 70-130 3.79 20 Chromium [He] 9/30/22 12:21 0.102 0.00100 " 0.100 0.002 99.2 70-130 3.79 20 Chromium [He] 9/30/22 12:21 0.102 0.00100 " 0.100 0.002 99.2 70-130 3.79 20 Chromium [He] 9/30/22 12:21 0.102 0.00100 " 0.100 0.002 99.2 70-130 3.79 20 Chromium [He] 9/30/22 12:21 0.102 0.00100 " 0.100 0.002 99.2 70-130 3.79 20 Chromium [He] 9/30/22 12:21 0.102 0.102 0.00100 " 0.100 0.002 99.2 70-130 3.79 20 Chromium [He] 9/30/22 12:21 0.102 0.102 0.102 0.00100 " 0.100 0.002 99.2 70-130 3.79 20 Chromium [He] 9/30/22 12:21 0.102 0.102 0.102 0.00100 " 0.100 0.002 99.2 0.00100 " 0.100 0.002 99.2 0.00100 " 0.100 0.002 99.2 0.00100 " 0.100 0.002 99.2 0.00100 " 0.100 0.002 99.2 0.00100 " 0.100 0.002 99.2 0.00100 " 0.100 0.002 99.2 0.00100 " 0.100 0.002 99.2 0.00100 " 0.100 0.002 99.2 0.00100 " 0.100 0.002 99.2 0.00100 " 0.100 0.002 99.2 0.00100 " 0.100 0.002 99.2 0.00100 " 0.100 0.002 99.2 0.00100 " 0.100 0.002 99.2 0.00100 " 0	Antimony [He]	9/30/22 12:21	0.104	0.00200	mg/L	0.100	ND	104	70-130	3.39	20	
Cadmium [He] 9/30/22 12:21 0.101 0.00100 " 0.100 0.0004 101 70-130 3.21 20 Chromium [He] 9/30/22 12:21 0.099 0.00100 " 0.100 0.0006 98.2 70-130 2.62 20 Lead [He] 9/30/22 12:21 0.102 0.00100 " 0.100 0.002 99.2 70-130 3.21 20 Slickel [He] 9/30/22 12:21 0.123 0.00100 " 0.100 0.032 91.1 70-130 3.79 20	Arsenic [NG]	9/30/22 12:21	0.096	0.00200		0.100	ND	95.9	70-130	4.13	20	
Chromium [He] 9/30/22 12:21 0.099 0.00100 " 0.100 0.0006 98.2 70-130 2.62 20 Lead [He] 9/30/22 12:21 0.102 0.00100 " 0.100 0.002 99.2 70-130 3.21 20 Nickel [He] 9/30/22 12:21 0.123 0.00100 " 0.100 0.032 91.1 70-130 3.79 20	Beryllium [He]	9/30/22 12:21	0.107	0.00100		0.100	0.004	104	70-130	2.75	20	
Lead [He] 9/30/22 12:21 0.102 0.00100 " 0.100 0.002 99.2 70-130 3.21 20 Nickel [He] 9/30/22 12:21 0.123 0.00100 " 0.100 0.032 91.1 70-130 3.79 20	Cadmium [He]	9/30/22 12:21	0.101	0.00100		0.100	0.0004	101	70-130	3.21	20	
Vickel [He] 9/30/22 12:21 0.123 0.00100 " 0.100 0.032 91.1 70-130 3.79 20	Chromium [He]	9/30/22 12:21	0.099	0.00100		0.100	0.0006	98.2	70-130	2.62	20	
• •	Lead [He]	9/30/22 12:21	0.102	0.00100		0.100	0.002	99.2	70-130	3.21	20	
Selenium [NG] 9/30/22 12:21 0.111 0.00500 " 0.100 0.015 96.6 70-130 4.22 20	Nickel [He]	9/30/22 12:21	0.123	0.00100		0.100	0.032	91.1	70-130	3.79	20	
	Selenium [NG]	9/30/22 12:21	0.111	0.00500		0.100	0.015	96.6	70-130	4.22	20	

Certification Code

Environmental Management Services

Project: Cooperative Energy CCR Semiannual

PO Box 15369 Hattiesburg MS, 39404-5369

Analyte

Project Number: SOU2-22-001
Project Manager: Ken Ruckstuhl

Reported: 11/08/2022 12:31

Certified Analyses Included in this Report

Allalyto	Columbiation Code
EPA 200.7 Rev 4.4 in Water	
Aluminum 394.401 [Radial]	C01,C02
Aluminum 396.152 [Radial]	C01,C02
Antimony 206.833 [Axial]	C01,C02
Arsenic 193.759 [Axial]	C01,C02
Barium 455.403 [Radial]	C01,C02
Barium 493.409 [Radial]	C01,C02
Beryllium 313.042 [Axial]	C01,C02
Boron 249.773 [Radial]	C01,C02
Cadmium 228.802 [Axial]	C01,C02
Calcium 315.887 [Radial]	C01,C02
Chromium 283.563 [Axial]	C01,C02
Cobalt 228.616 [Axial]	C01,C02
Copper 324.754 [Axial]	C01,C02
Iron 259.940 [Axial]	C01,C02
Iron 259.940 [Radial]	C01,C02
Lead 220.353 [Axial]	C01,C02
Lithium 610.362 [Axial]	C01,C02
Magnesium 285.213 [Radial]	C01,C02
Manganese 257.610 [Axial]	C01,C02
Molybdenum 202.030 [Axial]	C01,C02
Nickel 231.604 [Axial]	C01,C02
Potassium 766.490 [Radial]	C01,C02
Phosphorus 178.284 [Axial]	C01,C02
Phosphorus 178.284 [Radial]	C01,C02
Selenium 196.090 [Axial]	C01,C02
Silver 328.068 [Axial]	C01,C02
Sodium 589.592 [Axial]	C01,C02
Sodium 589.592 [Radial]	C01,C02
Strontium 346.446 [Radial]	C01,C02
Strontium 421.552 [Radial]	C01,C02
Thallium 190.856 [Axial]	C01,C02
Vanadium 309.311 [Axial]	C01,C02
Zinc 213.856 [Axial]	C01,C02
EPA 200.8 Rev 5.4 in Water	
Aluminum [He]	C01,C02
Antimony [He]	C01,C02
Antimony [HHe]	C01,C02
Antimony [NG]	C01,C02
Arsenic [He]	C01,C02
Arsenic [HHe]	C01,C02
Arsenic [NG]	C01,C02

Environmental Management Services Project: Cooperative Energy CCR Semiannual

PO Box 15369 Project Number: SOU2-22-001 Reported:

Hattiesburg MS, 39404-5369 Project Manager: Ken Ruckstuhl 11/08/2022 12:31

Barium [He]	C01,C02
Beryllium [He]	C01,C02
Boron [NG]	C01,C02
Cadmium [He]	C01,C02
Cadmium [HHe]	C01,C02
Cadmium [NG]	C01,C02
Chromium [He]	C01,C02
Cobalt [He]	C01,C02
Copper [He]	C01,C02
Copper [NG]	C01,C02
Iron [He]	C01,C02
Lead [He]	C01,C02
Lead [NG]	C01,C02
Manganese [He]	C01,C02
Molybdenum [He]	C01,C02
Nickel [He]	C01,C02
Selenium [He]	C01,C02
Selenium [HHe]	C01,C02
Selenium [NG]	C01,C02
Silver [He]	C01,C02
Silver [NG]	C01,C02
Strontium [He]	C01,C02
Thallium [He]	C01,C02
Vanadium [He]	C01,C02
Zinc [He]	C01,C02

^{**}Only compounds included in this list are associated with accredited analyses**

PO Box 15369 Hattiesburg MS, 39404-5369 Project: Cooperative Energy CCR Semiannual

Project Number: SOU2-22-001
Project Manager: Ken Ruckstuhl

Reported: 11/08/2022 12:31

Laboratory Accreditations/Certifications

Code	Description	Number	Expires
C01	LA Environmental Lab Accreditation Program	01960	06/30/2022
C02	The NELAC Institute (NELAP)	TNI01397	06/30/2022
C03	Ms Dept of Health (Drinking Water Microbiology)	MS00021	12/31/2022
C04	Ms Dept of Health (Drinking Water Chemistry)	MS00021	12/31/2022
C05	Ms DEQ Lead Firm Certification	PBF-00000028	03/24/2023
C06	MsDEQ Asbestos Inspector : C.D. Bingham	ABI-00001348	02/12/2023
C07	MsDEQ Air Monitor : C.D. Bingham	AM-011572	02/13/2023
C08	MsDEQ Asbestos Inspector: C. W. Meins	ABI-00001821	09/09/2022
C09	MsDEQ Air Monitor: C.W. Meins	AM-011189	02/13/2023
C14	MsDEQ Lead Paint Inspector : C.D. Bingham	PBI-00003690	01/29/2023
C15	MsDEQ Lead Paint Inspector : C.W. Meins	PBI-00001740	01/29/2023

Report Definitions

TNC	Too Numerous To Count
DET	Analyte DETECTED
ND	Analyte NOT DETECTED at or above the minimum reporting limit
NR	Not Reported
RPD	Relative Percent Difference
ICV	Initial Calibration Verflication
CCV	Continuing Calibration Verification Standard
SSV	Secondary Source Verfication Standard
LCS	Lab Control Spike - Lab matrix prepared with known concentration of analyte/s of interest analyzed by method.
MS	Matrix Spike - Sample prepared with known concentration of analyte/s of interest analyzed by method.
MSD	Matrix Spike Duplicate - Duplicate sample prepared with known concentration of analyte/s of interest analyzed by method.
MRL	Minimum Reporting Limit
%REC	Percentage Recovery of known concentration added to matrix
Batch	Group of samples prepared for analysis not to exceed 20 samples.
Matrix	Material containing analyte/s of interest
Surrogate	Analyte added to sample to determine extraction efficiency of method.

Environmental Management Services Project: Cooperative Energy CCR Semiannual

 PO Box 15369
 Project Number: SOU2-22-001
 Reported:

 Hattiesburg MS, 39404-5369
 Project Manager: Ken Ruckstuhl
 11/08/2022 12:31

Analyst Initials Key

<u>Initials</u>
ASC
CLV
DLW
GWG
HMS
SET
TKM
TPT

PO Box 1410, Ocean Springs, MS 39566-1410 (228) 875-6420 FAX (228) 875-6423

www.micromethodslab.com

Chain of Custody Record

LELAP ID # 01960
TNI ID # TNI01397

Print Form

WO# 2200322

Company Name: EMS		Project Manager: Ken Ruckstuhl	Turn Around Time & Reporting
Address: 7350 US Hwy 98	WY 98	Purchase Order #:	3max
City: Hattiesburg	State: MS Zip: 39402	Email Address: kruckstuhl@env-mat.com	All rush order
Phone: 601 544 3674	42		
Fax: 601 544 0504		Sampler Name Signed:	QC Level: Level 1
		List Analyses Requested	Testing
Project Name: Cooperat	Cooperative Energy CCR Semiannual	servative:	
Project#:	SOU2-22-001	ontaine G) or osite (C endix App I	Their rest rield lest Held lest Held lest W = Water Water Water
Sample Identification	Sampling Matrix Date/Time Code	Grab (Compo	S = Solid SO = Soil
MW-2	M (00; 11 22-82-6)	ெ ×	SE = Sediment
MW-3	W 08:32 88-88-9		A = Air
MW-4	M 51.5126-65-6	Columbia	CI Chadas
MW-5	7-22-32/4:05 W	6 × ×	\$ F F S S S S S S S S S S S S S S S S S
O-AAIAI	174-12 14:45 W	G X X	
MV-TO	4-37-37 11-30 W	\vdash	Preservation:
1-00	W 100 El W-W-1	(a)	1= H2SO4 2= H3PO4
			3=NaOH 4=ZnC4H1006
	7		NaOH 6=HNO3
ed on Ice N N	Inermometer# Cooler #	t Tem	7::Na2S2O3 8-HCl
Date of Little	By: Al	sample Blank x Cooler	**All Temps are Corrected Values** 9=NaHSO4
	rinied Name	Signature Company Date Time	Notes: (00/CV 4 1104 0.82
Received by	Mar Willer	Car Land Car Just 18. 18. 18. 18. 18. 18. 18. 18.	See Work Order: 000/4/4 1134 1.4°C
Relinquished by	101	at cirilain and some	Appendix III - boron, calcium, chloride, fluoride
Received by			sulfate, total dissolved solids
Relinquished by			Semiannual Appendix IV - barium, beryllium,
Received by			cobait, lead, lithium, molybdenum, radium

DCN# F316 Rev.#5

Physical Address: 6500 Sunplex Drive, Ocean Springs MS 39564

October 07, 2022

Tina Tomek Micro Methods Laboratory, Inc. P. O. Box 1410 Ocean Springs, MS 39566

RE: Project: 2209382

Pace Project No.: 20257194

Dear Tina Tomek:

Enclosed are the analytical results for sample(s) received by the laboratory on September 30, 2022. The results relate only to the samples included in this report. Results reported herein conform to the applicable TNI/NELAC Standards and the laboratory's Quality Manual, where applicable, unless otherwise noted in the body of the report.

The test results provided in this final report were generated by each of the following laboratories within the Pace Network:

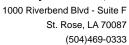
• Pace Analytical Gulf Coast

If you have any questions concerning this report, please feel free to contact me.

Sincerely,

Karen Brown

karen.brown@pacelabs.com


Kaunt Prour

(504)469-0333

Project Manager

Enclosures

CERTIFICATIONS

Project: 2209382
Pace Project No.: 20257194

North Carolina Certification #: 618

Pace Analytical Gulf Coast

7979 Innovation Park Drive, Baton Rouge, LA 70820 Arkansas Certification #: 88-0655 DoD ELAP Certification #: 6429-01 Florida Certification #: E87854 Illinois Certification #: 004585 Kansas Certification #: E-10354 Louisiana/LELAP Certification #: 01955

North Dakota Certification #: R-195 Oklahoma Certification #: 2019-101 South Carolina Certification #: 73006001 Texas Certification #: T104704178-19-11 USDA Soil Permit # P330-19-00209 Virginia Certification #: 460215 Washington Certification #: C929

SAMPLE SUMMARY

Project: 2209382
Pace Project No.: 20257194

Lab ID	Sample ID	Matrix	Date Collected	Date Received
20257194001	2209382-01	Water	09/23/22 11:00	09/30/22 10:30
20257194002	2209382-02	Water	09/23/22 09:20	09/30/22 10:30
20257194003	2209382-03	Water	09/22/22 15:15	09/30/22 10:30
20257194004	2209382-04	Water	09/22/22 14:05	09/30/22 10:30
20257194005	2209382-05	Water	09/22/22 12:45	09/30/22 10:30
20257194006	2209382-06	Water	09/22/22 11:30	09/30/22 10:30
20257194007	2209382-07	Water	09/22/22 12:00	09/30/22 10:30

SAMPLE ANALYTE COUNT

Project: 2209382
Pace Project No.: 20257194

Lab ID	Sample ID	Method	Analysts	Analytes Reported	Laboratory
20257194001	2209382-01	EPA 9056	KEG	2	PASI-GCLA
20257194002	2209382-02	EPA 9056	KEG	2	PASI-GCLA
20257194003	2209382-03	EPA 9056	KEG	2	PASI-GCLA
20257194004	2209382-04	EPA 9056	KEG	2	PASI-GCLA
20257194005	2209382-05	EPA 9056	KEG	2	PASI-GCLA
20257194006	2209382-06	EPA 9056	KEG	2	PASI-GCLA
20257194007	2209382-07	EPA 9056	KEG	2	PASI-GCLA

PASI-GCLA = Pace Analytical Gulf Coast

PROJECT NARRATIVE

Project: 2209382
Pace Project No.: 20257194

Method:EPA 9056Description:EPA 9056AClient:Micro MethodsDate:October 07, 2022

General Information:

7 samples were analyzed for EPA 9056 by Pace Analytical Gulf Coast. All samples were received in acceptable condition with any exceptions noted below or on the chain-of custody and/or the sample condition upon receipt form (SCUR) attached at the end of this report.

Hold Time:

The samples were analyzed within the method required hold times with any exceptions noted below.

Method Blank:

All analytes were below the report limit in the method blank, where applicable, with any exceptions noted below.

Laboratory Control Spike:

All laboratory control spike compounds were within QC limits with any exceptions noted below.

Matrix Spikes:

All percent recoveries and relative percent differences (RPDs) were within acceptance criteria with any exceptions noted below.

Additional Comments:

This data package has been reviewed for quality and completeness and is approved for release.

ANALYTICAL RESULTS

Project: 2209382
Pace Project No.: 20257194

Date: 10/07/2022 09:42 AM

Sample: 2209382-01	Lab ID:	20257194001	Collected	d: 09/23/22	2 11:00	Received: 09	/30/22 10:30 Ma	atrix: Water	
	-		Report					0.0	
Parameters	Results —	Units	Limit	MDL	DF_	Prepared	Analyzed	CAS No.	Qual
EPA 9056A		Method: EPA 9							
	Pace Analy	tical Gulf Coa	st						
Chloride	103	mg/L	10.0	2.50	50		10/04/22 11:41	16887-00-6	
Sulfate	274	mg/L	10.0	5.00	50		10/04/22 11:41	14808-79-8	
Sample: 2209382-02	Lab ID:	20257194002	Collected	d: 09/23/22	2 09:20	Received: 09	/30/22 10:30 Ma	atrix: Water	
			Report						
Parameters	Results	Units	Limit	MDL	DF	Prepared	Analyzed	CAS No.	Qual
EPA 9056A	Analytical I	Method: EPA 9	056						
	Pace Analy	tical Gulf Coa	st						
Chloride	137	mg/L	4.00	1.00	20		10/04/22 12:33	16887-00-6	
Sulfate	1640	mg/L	100	50.0	500		10/04/22 12:16	14808-79-8	
Sample: 2209382-03	Lab ID:	20257194003	Collected	d: 09/22/22	2 15:15	Received: 09	/30/22 10:30 Ma	atrix: Water	
			Report						
Parameters	Results	Units	Limit	MDL	DF	Prepared	Analyzed	CAS No.	Qual
EPA 9056A		Method: EPA 9							
Chloride	125	mg/L	4.00	1.00	20		10/04/22 13:08	16887-00-6	
Sulfate	1670	mg/L	100	50.0	500		10/04/22 12:50	14808-79-8	
Sample: 2209382-04	Lab ID:	20257194004	Collected	d: 09/22/22	2 14:05	Received: 09	/30/22 10:30 Ma	atrix: Water	
			Report						
Parameters	Results	Units	Limit	MDL	DF	Prepared	Analyzed	CAS No.	Qual
EPA 9056A	•	Method: EPA 9 rtical Gulf Coa							
Chloride	175	mg/L	4.00	1.00	20		10/04/22 13:42	16887-00-6	
Sulfate	1770	mg/L	100	50.0	500		10/04/22 13:25	14808-79-8	
Sample: 2209382-05	Lab ID:	20257194005	Collected	d: 09/22/22	2 12:45	Received: 09	/30/22 10:30 Ma	atrix: Water	
			Report						
Parameters	Results	Units	Limit	MDL	DF	Prepared	Analyzed	CAS No.	Qual
EPA 9056A	•	Method: EPA 9							
Chloride	7.75	mg/L	0.200	0.050	1		10/03/22 18:42	16887-00-6	
Sulfate	12.1	mg/L	0.400	0.200	2		10/04/22 14:00		

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, LLC.

ANALYTICAL RESULTS

Project: 2209382
Pace Project No.: 20257194

Date: 10/07/2022 09:42 AM

Sample: 2209382-06	Lab ID:	20257194006	Collected	d: 09/22/22	2 11:30	Received: 09/	30/22 10:30 Ma	atrix: Water	
			Report						
Parameters	Results	Units	Limit	MDL	DF_	Prepared	Analyzed	CAS No.	Qual
EPA 9056A	Analytical	Method: EPA 9	056						
	Pace Anal	ytical Gulf Coas	st						
Chloride	169	mg/L	4.00	1.00	20		10/04/22 15:27	16887-00-6	
Sulfate	449	mg/L	20.0	10.0	100		10/04/22 15:09	14808-79-8	
Sample: 2209382-07	Lab ID:	20257194007	Collected	d: 09/22/22	2 12:00	Received: 09/	30/22 10:30 Ma	atrix: Water	
			Report						
Parameters	Results	Units	Limit	MDL	DF	Prepared	Analyzed	CAS No.	Qual
EPA 9056A	Analytical	Method: EPA 9	056						
	Pace Anal	ytical Gulf Coas	st						
Chloride	125	mg/L	4.00	1.00	20		10/04/22 16:01	16887-00-6	
Sulfate	1640	mg/L	100	50.0	500		10/04/22 15:44	14808-79-8	

QUALITY CONTROL DATA

Project: 2209382 Pace Project No.: 20257194

QC Batch: 751019

QC Batch Method: EPA 9056 Analysis Method:

EPA 9056

Analysis Description:

EPA 9056A IC Anions Water

Laboratory:

Pace Analytical Gulf Coast

MDL

Associated Lab Samples: 20257194005

Parameter

Parameter

METHOD BLANK: 2402931

Matrix: Water

Associated Lab Samples:

20257194005

Blank Result Reporting Limit

2402933

LCSD

Analyzed

Qualifiers

Chloride

Chloride

Units mg/L

Units

mg/L

ND

0.200

0.050 10/03/22 10:36

LABORATORY CONTROL SAMPLE & LCSD:

2402932

LCS

LCSD LCS % Rec % Rec

% Rec Limits

Max RPD

Qualifiers 15

Spike Conc. 2.5

Result 2.29 Result 2.30 92

92 80-120 RPD 0

Date: 10/07/2022 09:42 AM

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

QUALITY CONTROL DATA

Project: 2209382
Pace Project No.: 20257194

Chloride

Date: 10/07/2022 09:42 AM

Sulfate

QC Batch: 751113 Analysis Method: EPA 9056

QC Batch Method: EPA 9056 Analysis Description: EPA 9056A IC Anions Water

Laboratory: Pace Analytical Gulf Coast

Associated Lab Samples: 20257194001, 20257194002, 20257194003, 20257194004, 20257194005, 20257194006, 20257194007

METHOD BLANK: 2403330 Matrix: Water

Associated Lab Samples: 20257194001, 20257194002, 20257194003, 20257194004, 20257194005, 20257194006, 20257194007

Blank Reporting Limit MDL Qualifiers Parameter Units Result Analyzed mg/L ND 0.200 0.050 10/04/22 10:58 mg/L ND 0.200 0.100 10/04/22 10:58

LABORATORY CONTROL SAMPLE & I	_CSD: 2403331		24	403332						
		Spike	LCS	LCSD	LCS	LCSD	% Rec		Max	
Parameter	Units	Conc.	Result	Result	% Rec	% Rec	Limits	RPD	RPD	Qualifiers
Chloride	mg/L	2.5	2.26	2.26	91	90	80-120	0	15	
Sulfate	mg/L	2.5	2.40	2.41	96	97	80-120	0	15	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

QUALIFIERS

Project: 2209382
Pace Project No.: 20257194

DEFINITIONS

DF - Dilution Factor, if reported, represents the factor applied to the reported data due to dilution of the sample aliquot.

ND - Not Detected at or above adjusted reporting limit.

TNTC - Too Numerous To Count

J - Estimated concentration above the adjusted method detection limit and below the adjusted reporting limit.

MDL - Adjusted Method Detection Limit.

PQL - Practical Quantitation Limit.

RL - Reporting Limit - The lowest concentration value that meets project requirements for quantitative data with known precision and bias for a specific analyte in a specific matrix.

S - Surrogate

1,2-Diphenylhydrazine decomposes to and cannot be separated from Azobenzene using Method 8270. The result for each analyte is a combined concentration.

Consistent with EPA guidelines, unrounded data are displayed and have been used to calculate % recovery and RPD values.

LCS(D) - Laboratory Control Sample (Duplicate)

MS(D) - Matrix Spike (Duplicate)

DUP - Sample Duplicate

RPD - Relative Percent Difference

NC - Not Calculable.

SG - Silica Gel - Clean-Up

U - Indicates the compound was analyzed for, but not detected.

N-Nitrosodiphenylamine decomposes and cannot be separated from Diphenylamine using Method 8270. The result reported for each analyte is a combined concentration.

Reported results are not rounded until the final step prior to reporting. Therefore, calculated parameters that are typically reported as "Total" may vary slightly from the sum of the reported component parameters.

Pace Analytical is TNI accredited. Contact your Pace PM for the current list of accredited analytes.

TNI - The Nelac Institute

Date: 10/07/2022 09:42 AM

QUALITY CONTROL DATA CROSS REFERENCE TABLE

Project: 2209382
Pace Project No.: 20257194

Date: 10/07/2022 09:42 AM

Lab ID	Sample ID	QC Batch Method	QC Batch	Analytical Method	Analytical Batch
20257194001	2209382-01	EPA 9056	751113		
20257194002	2209382-02	EPA 9056	751113		
20257194003	2209382-03	EPA 9056	751113		
20257194004	2209382-04	EPA 9056	751113		
20257194005	2209382-05	EPA 9056	751019		
20257194005	2209382-05	EPA 9056	751113		
20257194006	2209382-06	EPA 9056	751113		
20257194007	2209382-07	EPA 9056	751113		

WO#: 20257194 20257194

ONTRACT RDER

4613/27

Sending Laboratory:

Micro-Methods Laboratory, Inc.

6500 Sunplex Drive

Ocean Springs, MS 39564 Phone: 228.875.6420

Fax: 228.875.6423

Released By

Released By

Released By

Project Manager: Teresa Meins

Subcontracted Laboratory:

Pace Analytical 1000 Riverbend Blvd. Suite F St. Rose, LA 70087

Phone: -

Fax: -

Analysis		Due	Expires	Comments		
Sample ID: 2209382-01	Water	Sampled: 09/	23/2022 11:00	Sample Name:	MW-2	
Anions by IC SM 4110B 2011		10/03/2022	10/21/2022 11:00	Sulfate, Chlorid	e	
Containers Supplied: 125mL Plastic (E)						
Sample ID: 2209382-02	Water	Sampled: 09/	23/2022 09:20	Sample Name:	MW-3	
Anions by IC SM 4110B 2011		10/03/2022	10/21/2022 09:20	Sulfate, Chlorid	e	
Containers Supplied: 125mL Plastic (I)						
Sample ID: 2209382-03	Water	Sampled: 09/.	22/2022 15:15	Sample Name:	MW-4	
Anions by IC SM 4110B 2011		10/03/2022	10/20/2022 15:15	Sulfate, Chlorid	e	
Containers Supplied: 125mL Plastic (E)						
Sample ID: 2209382-04	Water	Sampled: 09/.	22/2022 14:05	Sample Name:	MW-5	
Anions by IC SM 4110B 2011		10/03/2022	10/20/2022 14:05	Sulfate, Chlorid	e	
Containers Supplied: 125mL Plastic (E)	,					
Sample ID: 2209382-05	Water	Sampled: 09/2	22/2022 12:45	Sample Name:	MW-6	
Anions by IC SM 4110B 2011		10/03/2022	10/20/2022 12:45	Sulfate, Chlorid	9	
Smah Jomet	9/2) 19/22 16:	<u> </u>	VPS	9/29/220	1630
Released By	alone	Date	Receiv	red By		Date 10:3
<u> </u>	1/30/2	20 10:	<u> </u>	Ans	Pace	9/30/22 10:3
Released By	•	Date	Receiv	red By		Date

Received By

Received By

Received By

Date

Date

Date

Date

Date

Date

SUBCONTRACT ORDER

(Continued)

Work Order: 2209382 (Continued)

Analysis		Due	Expires	Comments	
Containers Supplied: 125mL Plastic (E)					
Sample ID: 2209382-06	Water	Sampled: 09/2	22/2022 11:30	Sample Name: MW-10	
Anions by IC SM 4110B 2011		(8P)10/03/2022	10/20/2022 11:30	Sulfate, Chloride	
Containers Supplied: 125mL Plastic (E)					
Sample ID: 2209382-07	Water	Sampled: 09/2	22/2022 12:00	Sample Name: BD-1	
Anions by IC SM 4110B 2011		10/03/2022	10/20/2022 12:00	Sulfate, Chloride	
Containers Supplied: 125mL Plastic (E)		(d)			

Suah Joneh 9/29/2:	20 1030 Date	Received By 9/29/22	0 1630 Date
UPS 9/30/22 (10:30	Aus Pace 9/30	4
Released By	Date	Received By	Date
Released By	Date	Received By	Date
Released By	Date	Received By	Date
Released By	 Date	Received By	Date

DC#_Title: Excel Form Template Effective Date:

WO#: 20257194

P	ace ⁻	1000 Riverbend. Blvd St. Rose, LA 70087	d., Suite	F		Pro	jec	CLIE	NT: 2	20-MICRO	Jate: 10/	11/22
Courier:	☐ Pace Courier	☐ Hired Courier		ed X	X	JPS [DHL		USPS	☐ Customer	□ Other	
Custody 9	Seal on Cooler/Bo	x Present: XYES	□ N	o c	ustody	Seals int	act: 🗘	YES	□ NO	<u> </u>		
;·	Samples on ice: \	HES - NO	Тур	e of lo	e We	Blue	None			Date and Init	ials of penso	n examining
Temp sho	ould be ≤6°C *Temp	must be measured fro	om Temp	erature	e blank w	hen preser	nt		,			
Cooler #1	Thermometer Use	ed:	Cooler	Temp	°C: (O	bserved)_	1.8	···	(CF)_	(Actual)	7.8	
Cooler #2	Thermometer Use	ed:	Cooler	Temp	°C: (O	bserved)_			(CF)_	(Actual)		
	Thermometer Use			_	-	bserved)_						
	Thermometer Use	d:	Cooler	emp	°C: (OI	oserved)_			(CF)_	(Actual)	<u>. </u>	_
Tracking #	<u> </u>											
Temperatu	re Blank Present"?		□Yes	≥ No	□N/A							
Chain of Cu	ustody Present:		_		□N⁄A							
Chain of Cu	ustody Complete:		Xyes	□No	□n/a				·			· · · · · · · · · · · · · · · · · · ·
Chain of Cu	ustody Relinquishe	j:	Ż (Ÿes	□No	□n/a							
Sampler Na	ame & Signature or	COC:	□Yes		¹ □n/a				, ,			
Samples Ar	Tived within Hold T	ime:	Yes	□No	□n/a							
Sufficient Vo	olume:		Ayes	□No	□n/a							
Correct Con	tainers Used:		Xyes	□No	□n/a							
Filtered vol.	Rec. for Diss. tests	S	□Yes	□No	N/A/A		•					· · · · · · · · · · · · · · · · · · ·
Sample Lab	els match COC:		Yes	□No	□n/A							
	rs received within n ry and/or expiration		≿tyes	□No	□n/A							
	rs needing chemica ed (except VOA, co	l preservation have liform, & O&G).	□Yes	□No	D WA	If No, wa			added1	? □Yes □No		
	s preservation che with EPA recomme	cked found to be in ndaifon.	□Yes	□No	DN/A	HNO3 _ Date:			_ H2S			
Headspace i	n VOA Vials (>6m	m):	□Yes	□No	DIMA.		374			TREATURE OF A THE	use is	
Trip Blank Pr	resent:		□Yes	ZNo.		,						
Client Notif	fication/ Resolut	ion:										×
Person Conta						Date/T	īme:					
Comments/ F					•							
		· · · · · · · · · · · · · · · · · · ·								,		
										٠,		

October 14, 2022

Tina Tomek Micro-Methods Lab 6500 Sunplex Drive Ocean Springs, MS 39564

RE: Project: 2209382

Pace Project No.: 30526156

Dear Tina Tomek:

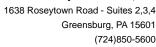
Enclosed are the analytical results for sample(s) received by the laboratory on September 29, 2022. The results relate only to the samples included in this report. Results reported herein conform to the applicable TNI/NELAC Standards and the laboratory's Quality Manual, where applicable, unless otherwise noted in the body of the report.

The test results provided in this final report were generated by each of the following laboratories within the Pace Network:

• Pace Analytical Services - Greensburg

If you have any questions concerning this report, please feel free to contact me.

Sincerely,


David A. Pichette david.pichette@pacelabs.com (724)850-5617 Project Manager

and Politico

Enclosures

cc: Accounts Payable, Micro-Methods Lab

CERTIFICATIONS

Project: 2209382
Pace Project No.: 30526156

Pace Analytical Services Pennsylvania

1638 Roseytown Rd Suites 2,3&4, Greensburg, PA 15601

ANAB DOD-ELAP Rad Accreditation #: L2417

Alabama Certification #: 41590 Arizona Certification #: AZ0734 Arkansas Certification

California Certification #: 04222CA Colorado Certification #: PA01547 Connecticut Certification #: PH-0694

Delaware Certification EPA Region 4 DW Rad

Florida/TNI Certification #: E87683 Georgia Certification #: C040 Florida: Cert E871149 SEKS WET

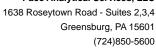
Guam Certification Hawaii Certification Idaho Certification Illinois Certification Indiana Certification Iowa Certification #: 391

Kansas/TNI Certification #: E-10358 Kentucky Certification #: KY90133 KY WW Permit #: KY0098221 KY WW Permit #: KY0000221

Louisiana DHH/TNI Certification #: LA180012 Louisiana DEQ/TNI Certification #: 4086

Maine Certification #: 2017020 Maryland Certification #: 308

Massachusetts Certification #: M-PA1457 Michigan/PADEP Certification #: 9991 Missouri Certification #: 235
Montana Certification #: Cert0082
Nebraska Certification #: NE-OS-29-14
Nevada Certification #: PA014572018-1
New Hampshire/TNI Certification #: 297617
New Jersey/TNI Certification #: PA051
New Mexico Certification #: PA01457
New York/TNI Certification #: 10888
North Carolina Certification #: 42706
North Dakota Certification #: R-190

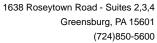

Oregon/TNI Certification #: PA200002-010 Pennsylvania/TNI Certification #: 65-00282 Puerto Rico Certification #: PA01457 Rhode Island Certification #: 65-00282

South Dakota Certification
Tennessee Certification #: 02867

Ohio EPA Rad Approval: #41249

Texas/TNI Certification #: T104704188-17-3 Utah/TNI Certification #: PA014572017-9 USDA Soil Permit #: P330-17-00091 Vermont Dept. of Health: ID# VT-0282 Virgin Island/PADEP Certification Virginia/VELAP Certification #: 460198 Washington Certification #: C868 West Virginia DEP Certification #: 143 West Virginia DHHR Certification #: 9964C

Wisconsin Approve List for Rad Wyoming Certification #: 8TMS-L



SAMPLE SUMMARY

Project: 2209382
Pace Project No.: 30526156

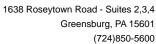
Lab ID	Sample ID	Matrix	Date Collected	Date Received
30526156001	2209382-01	Water	09/23/22 11:00	09/29/22 09:55
30526156002	2209382-02	Water	09/23/22 09:20	09/29/22 09:55
30526156003	2209382-03	Water	09/22/22 15:15	09/29/22 09:55
30526156004	2209382-04	Water	09/22/22 14:05	09/29/22 09:55
30526156005	2209382-05	Water	09/22/22 12:45	09/29/22 09:55
30526156006	2209382-06	Water	09/22/22 11:30	09/29/22 09:55
30526156007	2209382-07	Water	09/22/22 12:00	09/29/22 09:55

SAMPLE ANALYTE COUNT

Project: 2209382
Pace Project No.: 30526156

Lab ID	Sample ID	Method	Analysts	Analytes Reported
30526156001	2209382-01	EPA 903.1	GDH	1
		EPA 904.0	VAL	1
30526156002	2209382-02	EPA 903.1	GDH	1
		EPA 904.0	VAL	1
30526156003	2209382-03	EPA 903.1	GDH	1
		EPA 904.0	VAL	1
30526156004	2209382-04	EPA 903.1	GDH	1
		EPA 904.0	VAL	1
30526156005	2209382-05	EPA 903.1	GDH	1
		EPA 904.0	VAL	1
30526156006	2209382-06	EPA 903.1	GDH	1
		EPA 904.0	VAL	1
30526156007	2209382-07	EPA 903.1	GDH	1
		EPA 904.0	VAL	1

PASI-PA = Pace Analytical Services - Greensburg

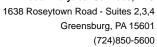

ANALYTICAL RESULTS - RADIOCHEMISTRY

Project: 2209382
Pace Project No.: 30526156

Sample: 2209382-01 PWS:	Lab ID: 30526 Site ID:	156001 Collected: 09/23/22 11:00 Sample Type:	Received:	09/29/22 09:55	Matrix: Water	
PW5.	Site ID:	Sample Type.				
Parameters	Method	Act ± Unc (MDC) Carr Trac	Units	Analyzed	CAS No.	Qual
	Pace Analytical S	ervices - Greensburg				
Radium-226	EPA 903.1	0.0709 ± 0.368 (0.763) C:NA T:95%	pCi/L	10/10/22 15:35	5 13982-63-3	
	Pace Analytical S	ervices - Greensburg				
Radium-228	EPA 904.0	1.21 ± 0.498 (0.773) C:63% T:89%	pCi/L	10/13/22 12:20) 15262-20-1	
Sample: 2209382-02	Lab ID: 30526		Received:	09/29/22 09:55	Matrix: Water	
PWS:	Site ID:	Sample Type:				
Parameters	Method	Act ± Unc (MDC) Carr Trac	Units	Analyzed	CAS No.	Qual
	Pace Analytical S	ervices - Greensburg				
Radium-226	EPA 903.1	0.335 ± 0.476 (0.806) C:NA T:92%	pCi/L	10/10/22 15:35	5 13982-63-3	
	Pace Analytical S	ervices - Greensburg				
Radium-228	EPA 904.0	2.79 ± 0.728 (0.664) C:66% T:91%	pCi/L	10/13/22 12:20) 15262-20-1	
Sample: 2209382-03	Lab ID: 30526	156003 Collected: 09/22/22 15:15	Received:	09/29/22 09:55	Matrix: Water	
PWS:	Site ID:	Sample Type:				
Parameters	Method	Act ± Unc (MDC) Carr Trac	Units	Analyzed	CAS No.	Qual
	Pace Analytical S	ervices - Greensburg				
Radium-226	EPA 903.1	0.445 ± 0.517 (0.834) C:NA T:97%	pCi/L	10/10/22 15:35	5 13982-63-3	
	Pace Analytical S	ervices - Greensburg				
Radium-228	EPA 904.0	1.49 ± 0.505 (0.675) C:74% T:87%	pCi/L	10/13/22 12:24	1 15262-20-1	
Sample: 2209382-04 PWS:	Lab ID: 30526 Site ID:	156004 Collected: 09/22/22 14:05 Sample Type:	Received:	09/29/22 09:55	Matrix: Water	
Parameters	Method	Act ± Unc (MDC) Carr Trac	Units	Analyzed	CAS No.	Qual
	Pace Analytical S	ervices - Greensburg				
Radium-226	EPA 903.1	0.0746 ± 0.527 (1.05) C:NA T:90%	pCi/L	10/10/22 15:35	5 13982-63-3	
	Pace Analytical S	ervices - Greensburg				
Radium-228	EPA 904.0	1.25 ± 0.527 (0.858) C:67% T:88%	pCi/L	10/13/22 12:21	1 15262-20-1	

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, LLC.



ANALYTICAL RESULTS - RADIOCHEMISTRY

Project: 2209382
Pace Project No.: 30526156

Sample: 2209382-05	Lab ID: 305261		Received:	09/29/22 09:55 N	Matrix: Water	
PWS:	Site ID:	Sample Type:				
Parameters	Method	Act ± Unc (MDC) Carr Trac	Units	Analyzed	CAS No.	Qua
	Pace Analytical S	ervices - Greensburg		•		
Radium-226	EPA 903.1	0.287 ± 0.527 (0.941) C:NA T:96%	pCi/L	10/10/22 15:35	13982-63-3	
	Pace Analytical S	ervices - Greensburg				
Radium-228	EPA 904.0	1.39 ± 0.496 (0.715) C:73% T:89%	pCi/L	10/13/22 12:22	15262-20-1	
Sample: 2209382-06 PWS:	Lab ID: 30526 1 Site ID:	156006 Collected: 09/22/22 11:30 Sample Type:	Received:	09/29/22 09:55 N	Matrix: Water	
Parameters	Method	Act ± Unc (MDC) Carr Trac	Units	Analyzed	CAS No.	Qua
	Pace Analytical S	ervices - Greensburg				
Radium-226	EPA 903.1	0.0692 ± 0.316 (0.643) C:NA T:92%	pCi/L	10/10/22 15:35	13982-63-3	
	Pace Analytical S	ervices - Greensburg				
Radium-228	EPA 904.0	2.28 ± 0.641 (0.704) C:74% T:85%	pCi/L	10/13/22 12:22	15262-20-1	
Sample: 2209382-07	Lab ID: 305261		Received:	09/29/22 09:55 M	Matrix: Water	
PWS:	Site ID:	Sample Type:				
Parameters	Method	Act ± Unc (MDC) Carr Trac	Units	Analyzed	CAS No.	Qua
	Pace Analytical S	ervices - Greensburg				
Radium-226	EPA 903.1	-0.0649 ± 0.296 (0.603) C:NA T:96%	pCi/L	10/10/22 15:35	13982-63-3	
	Pace Analytical S	ervices - Greensburg				
Radium-228	EPA 904.0	0.782 ± 0.436 (0.804) C:75% T:89%	pCi/L	10/13/22 12:22	15262-20-1	

QUALITY CONTROL - RADIOCHEMISTRY

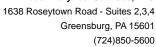
Project: 2209382
Pace Project No.: 30526156

QC Batch: 536948 Analysis Method: EPA 904.0

QC Batch Method: EPA 904.0 Analysis Description: 904.0 Radium 228

Laboratory: Pace Analytical Services - Greensburg

Associated Lab Samples: 30526156001, 30526156002, 30526156003, 30526156004, 30526156005, 30526156006, 30526156007


METHOD BLANK: 2605303 Matrix: Water

Associated Lab Samples: 30526156001, 30526156002, 30526156003, 30526156004, 30526156005, 30526156006, 30526156007

 Parameter
 Act ± Unc (MDC) Carr Trac
 Units
 Analyzed
 Qualifiers

 Radium-228
 0.648 ± 0.413 (0.782) C:71% T:88%
 pCi/L
 10/13/22 12:20

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

QUALITY CONTROL - RADIOCHEMISTRY

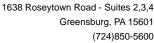
Project: 2209382
Pace Project No.: 30526156

QC Batch: 536947 Analysis Method: EPA 903.1

QC Batch Method: EPA 903.1 Analysis Description: 903.1 Radium-226

Laboratory: Pace Analytical Services - Greensburg

Associated Lab Samples: 30526156001, 30526156002, 30526156003, 30526156004, 30526156005, 30526156006, 30526156007


METHOD BLANK: 2605300 Matrix: Water

Associated Lab Samples: 30526156001, 30526156002, 30526156003, 30526156004, 30526156005, 30526156006, 30526156007

 Parameter
 Act ± Unc (MDC) Carr Trac
 Units
 Analyzed
 Qualifiers

 Radium-226
 0.116 ± 0.321 (0.623) C:NA T:90%
 pCi/L
 10/10/22 15:35

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

QUALIFIERS

Project: 2209382
Pace Project No.: 30526156

DEFINITIONS

DF - Dilution Factor, if reported, represents the factor applied to the reported data due to dilution of the sample aliquot.

ND - Not Detected at or above adjusted reporting limit.

TNTC - Too Numerous To Count

J - Estimated concentration above the adjusted method detection limit and below the adjusted reporting limit.

MDL - Adjusted Method Detection Limit.

PQL - Practical Quantitation Limit.

RL - Reporting Limit - The lowest concentration value that meets project requirements for quantitative data with known precision and bias for a specific analyte in a specific matrix.

S - Surrogate

1,2-Diphenylhydrazine decomposes to and cannot be separated from Azobenzene using Method 8270. The result for each analyte is a combined concentration.

Consistent with EPA guidelines, unrounded data are displayed and have been used to calculate % recovery and RPD values.

LCS(D) - Laboratory Control Sample (Duplicate)

MS(D) - Matrix Spike (Duplicate)

DUP - Sample Duplicate

RPD - Relative Percent Difference

NC - Not Calculable.

SG - Silica Gel - Clean-Up

U - Indicates the compound was analyzed for, but not detected.

N-Nitrosodiphenylamine decomposes and cannot be separated from Diphenylamine using Method 8270. The result reported for each analyte is a combined concentration.

Reported results are not rounded until the final step prior to reporting. Therefore, calculated parameters that are typically reported as "Total" may vary slightly from the sum of the reported component parameters.

Act - Activity

Date: 10/14/2022 05:29 PM

Unc - Uncertainty: For Safe Drinking Water Act (SDWA) analyses, the reported Unc. Is the calculated Count Uncertainty (95% confidence interval) using a coverage factor of 1.96. For all other matrices (non-SDWA), the reported Unc. is the calculated Expanded Uncertainty (aka Combined Standard Uncertainty, CSU), reported at the 95% confidence interval using a coverage factor of 1.96.

Gamma Spec: The Unc. reported for all gamma-spectroscopy analyses (EPA 901.1), is the calculated Expanded Uncertainty (CSU) at the 95.4% confidence interval, using a coverage factor of 2.0.

(MDC) - Minimum Detectable Concentration

Trac - Tracer Recovery (%)

Carr - Carrier Recovery (%)

Pace Analytical is TNI accredited. Contact your Pace PM for the current list of accredited analytes.

TNI - The NELAC Institute.

SUBCONTRACT ORDER

Sending Laboratory:

Micro-Methods Laboratory, Inc.

6500 Sunplex Drive

Ocean Springs, MS 39564 Phone: 228.875.6420

Fax: 228.875.6423

Project Manager: Teresa Meins

Subcontracted Laboratory:

Pace Analytical-7

1638 Roseytown Rd. Suites 2, 3, 4

Greensburg, PA 15601 Phone: (724) 850-5600

Fax: -

WO#: 30526156

Work Order: 2209382

Analysis	Due I	Expires Comments	
	Sampled: 09/23/202	2 11:00 Sample Name	MW-2 001
Radium, Total 226 & 228 by EPA 903.1 &	90 10/03/2022 10/21	/2022 11:00	
Containers Supplied: 1000mL Plastic w/HNO3 (C) 1000mL Plasti	c w/HNO3 (D)		
Sample ID: 2209382-02 <i>Water</i>	Sampled: 09/23/202	2 09:20 Sample Name	: MW-3 002
Radium, Total 226 & 228 by EPA 903.1 &	90 10/03/2022 10/21	/2022 09:20	
Containers Supplied: 1000mL Plastic w/HNO3 (C) 1000mL Plasti	c w/HNO3 (D) 1000mL Plas	stic w/HNO3 (E) 1000mL Plastic	<u>,</u>
Sample ID: 2209382-03 <i>Water</i>	Sampled: 09/22/202	2 15:15 Sample Name	: MW-4 003
Radium,Total 226 & 228 by EPA 903.1 &	90 10/03/2022 10/20)/2022 15:15	
Containers Supplied: 1000mL Plastic w/HNO3 (C) 1000mL Plasti	c w/HNO3 (D)		
Sample ID: 2209382-04 <i>Water</i>	Sampled: 09/22/202	22 14:05 Sample Name	: MW-5 (D)
Radium, Total 226 & 228 by EPA 903.1 &	90 10/03/2022 10/20)/2022 14:05	
Containers Supplied: 1000mL Plastic w/HNO3 (C) 1000mL Plasti	c w/HNO3 (D)		
Sample ID: 2209382-05 <i>Water</i>	Sampled: 09/22/202	22 12:45 Sample Name	: MW-6 005
Radium, Total 226 & 228 by EPA 903.1 &	90 10/03/2022 10/20)/2022 12:45	
Mah Jameh 9/2 Released By 1 MS	14/22 (A 1430) Date	Received By A	9/26/2201630 Date 9.29.22 9:55
Released By	Date	Received/By	Date Date
Released By	Date	Received By	Date
Released By	Date	Received By	Date
Released By	Date	Received By	Date
	ı	Page 1 of 2	D 40 (40

SUBCONTRACT ORDER

(Continued)

Work Order: 2209382 (Continued)

Analysis	Due	Expires	Comments	
Containers Supplied: 1000mL Plastic w/HNO3 (C) 1000mL Plasti	c w/HNO3 (D)			
Sample ID: 2209382-06 <i>Water</i>	Sampled: 09/	22/2022 11:30	Sample Name: MW-10	006
Radium, Total 226 & 228 by EPA 903.1 &	90 10/03/2022	10/20/2022 11:30	0	
Containers Supplied: 1000mL Plastic w/HNO3 (C) 1000mL Plasti	c w/HNO3 (D)			
Sample ID: 2209382-07 <i>Water</i>	Sampled: 09/	22/2022 12:00	Sample Name: BD-1	007
Radium, Total 226 & 228 by EPA 903.1 &	90 10/03/2022	10/20/2022 12:00	J	
Containers Supplied: 1000mL Plastic w/HNO3 (C) 1000mL Plasti	c w/HNO3 (D)			

WO#: 30526156

PM: DAP

Due Date: 10/20/22

CLIENT: MICROMETHOD

Smahtomeh 9	124/2201430	IPS 9/2	V/22P 1630
Released By	Date	Received By	Date
INS		Zx Charlena	9-29-22 9:59
Released By	Date	Received By	Date
Released By	Date	Received By	Date
Released By	Date	Received By	Date
Released By	Date	Received By	Date

		Opo	81 JI XX	eceipt	
Face Analytical Client Name:	Mic	<u>ro-</u>	Me	thods	Project #
Courier: Fed Ex VUPS USPS Clien	ıt 🗀	Comm	ercial	Page Other	Label OA
Tracking #: 12 363 063 03 688					LIMS Login UP Proc
Custody Seal on Cooler/Box Present:				s intact:	no
Thermometer Used			: We		- NO
Cooler Temperature Observed Temp	-	···c		ection Factor:	-°C Final Temp:
Temp should be above freezing to 6°C		-			
				pH paper Lot#	Date and Initials of person examining contents: 9-30-02 36-
Comments:	Yes	No	N/A	10Dodol	Jones 11 30 302 131
Chain of Custody Present:	V			1.	
Chain of Custody Filled Out:	1/			2.	
Chain of Custody Relinquished:	1	L,		3.	
Sampler Name & Signature on COC:		V		4.	
Sample Labels match COC:	V			5.	
-Includes date/time/ID Matrix:	NT	1	,		
Samples Arrived within Hold Time:	1			6.	
Short Hold Time Analysis (<72hr remaining):		V	1	7.	
Rush Turn Around Time Requested:		كيا	'	8.	
Sufficient Volume:	V			9.	
Correct Containers Used:	*			10.	
-Pace Containers Used:					
Containers Intact:	V			11.	
Orthophosphate field filtered			1/	12.	
Hex Cr Aqueous sample field filtered			V	13.	
Organic Samples checked for dechlorination:			\(\sigma	14.	
Filtered volume received for Dissolved tests				15.	
All containers have been checked for preservation.	1			16. Added 2.5	ML HNO3 to samples 00
exceptions: VOA, coliform, TOC, O&G, Phenolics Non-aqueous matrix	Radon	,		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	
All containers meet method preservation		./	1	Initial when	Date/time of preservation 9-30-22 11:25
requirements.			<u> </u>	completed Ju	•
				Lot # of added カレカユー preservative	-1)11
leadspace in VOA Vials (>6mm):				17.	
rip Blank Present:				18.	
rip Blank Custody Seals Present			V		
Rad Samples Screened < 0.5 mrem/hr	V			Initial when ocmpleted:	Date: 9-30-22 Survey Meter SN: 1563
Add Samples Screened Vo.5 interiori			<u> </u>	Josephica, S C	1200 1 20 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1
Client Notification/ Resolution: Person Contacted:			Date/	Time:	Contacted By:

Note: Whenever there is a discrepancy affecting North Carolina compliance samples, a copy of this form will be sent to the North Carolina DEHNR Certification Office (i.e. out of hold, incorrect preservative, out of temp, incorrect containers)

 $\ \square$ A check in this box indicates that additional information has been stored in ereports.

*PM review is documented electronically in LIMS. When the Project Manager closes the SRF Review schedule in LIMS. The review is in the Status section of the Workorder Edit Screen.

Page 12 of 13 Page 49 of 50

ENV-FRM-GRUR-0072 00 29Dec2020

Pace Greensburg Lab -Sample Container Count

PM: DAP

Client Micro-Mathods

2209382

Pace Analytical®

Due Date: 10/20/22 CLIENT: MICROMETHOD

NIAB (X

BGSN

Bein

TGDA

USDA UEDA

8£9∀

USDA

TrəA

VG18

HIĐA

Matrix

Sample Line Item

3

က 4 ιO 9

~

Profile Number 14460

SPLC

MGKL

WGFU

NOAK

U69V

Notes

16Đ∧			
Н€ЭЛ			
ause			
DG98		 	
DE48			
8648			
ВРЗИ			
)£48			
	-		

S648						
ВЬЗИ						
)£48						
1298						
8658						
าเฯล						

					li	 	
S690	 	 		 			
UE98							
8648							
ВРЗИ							
)£48							
7d8							
85%							

 \mathcal{A}

C

		Plast	الت
GCUB	1 Gallon Cubitainer		17 I
12GN	12GN 1/2 Gallon Cubitainer	>	×1
SP5T	SP5T 120mL Coliform Na Thiosulfate		
BP1N	BP1N 1L plastic HNO3	12	1
BP1U	BP1U 1L plastic unpreserved		1 1
BP3S	250mL plastic H2SO4	3	2
BP3N	250mL plastic HNO3	S	77
BP3U	250mL plastic unpreserved		0
BP3C	250ml plastic NAOH	M	~
BP2S	500mL plastic H2SO4		i
BP2U	BP2U 500mL plastic unpreserved		

500mL clear glass unpreserved

oz wide jar unpreserved

WGFU BG2U 500mL amber glass unpreserve

8oz wide jar unpreserved

WGKU

250mL amber glass unpreserved

250mL amber glass H2SO4

AG3S

AG3U

L clear glass unpreserved

AG2U

L amber glass Na Thiosuifate

L amber glass H2SO4

Gallon Jug

Z O

amber glass HCI

AG1H

AG1T **BG10**

AG1S

f0mL clear VOA vial Na Thiosu

40mL clear VOA vial

VG9U

40mL clear VOA vial HCI

VG9H JGFU

VG9T

00mL amber glass Na Thiosulfate

100mL amber glass unprserved

AGSU

NSO ON

AGST

Gallon Jug with HNO3

toz amber wide jar

40mL amber VOA vial H2SO4

DG9S

Glass

Container Codes

12 _

19

 ∞ တ

Р	Plastic / Misc.	Misc.
1 Gallon Cubitainer	EZI	5g Encore
1/2 Gallon Cubitainer	VOAK	Kit for Volatile Solid
120mL Coliform Na Thiosulfate	_	Wipe/Swab
1L plastic HNO3	ZPLC	Ziploc Bag
1L plastic unpreserved		
250mL plastic H2SO4	WT	Water
250mL plastic HNO3	SF	Solid
250mL plastic unpreserved	or	Non-aqueous liquid
250ml plastic NAOH	WP	Wipe
500mL plastic H2SO4		
500mL plastic unpreserved		

Page 13 of 13 Page 50 of 50

Site CO	=N				Well Number	MW-	- 02
Collector/Operator	AN	iven			- V	- 10100	
Evacuation date/time Method of evacuation Top of casing to water Top of casing to bottom	2-8-27 - Perist - 22.	altic par	3.46	Il Information Sampling date/i Method of samp Gallons per wel	oling I volume	2-8-22 Low +	14:45 Tow
Water level after evac	8.	12	Sample	Data		. 9	744-1
13.54 16.7 13.59 16.7 14.04 16.6	DO [mg/l] 0.38 0.33	Conductivity [µs/cm] 1443 1332 1176	pH 4.22 4.27 4.59	ORP 178,4 181,7 190,4	NTU's 61.53 34.42 50.18	App Tan	earance
14.09 16.6 14:14 16.7 14.24 16.9 14:29 16.8	0,36 0,36 0,32 0,31	1016 948 933 927	4,89 5,00 5.01 5.01	206,8 229,9 269,4	31.58 77.80 82.34 21.09	1 Par lighttan	K porticles
14:39 16.7	0.29	921	4,99	285.5	9.28		
Weather Condition: Sample Characteristics:	Sun	ny cla	General Inf W COO				
Containers/Amounts	(2) /L	For Radiolog	gical (1)	500ml for	Metals	(1)250 mL	foi floride
Recommend/Observations	filst	purge W	ater to	nalofo	f salids		
Sampler/Collector Stabilization recommer	ndations: Three +/-	10 /6 IOI turbiu	ity and DO,	inese are rougr	+/- 3% for co	onductivity, +/- 10	D mV for ORP, and
1/2"=0.0205 3/4"=0.03075	1"=0. 1 1/2"=	041	ell Casing Vo 2"=0 2 1/2"=	184 75	3"=0. 4"=0.		6"=1.469 8"=2.611

Site	COE					Well Number	MW-	3
Collector	/Operator	A.N.	ven					
Evacuation	on date/time	2-8-20		Monitoring We	II Information Sampling date	/time	2-8-22 Low F1	12'45
Method o	f evacuation	Peris	taltic po	IMD	Method of sam	3	LOW FI	Taci)
Top of ca	sing to water	4.	69		Gallons per we		0000	0.6
Top of ca	sing to bottom	17.	70		Total gallons e		2 250	01
Water lev	el after evac	41	86		, otal gallons c	, vacuated	<u> </u>	9/
			2.0	Sample	Data			×*
	Temp	DO	Conductivity				i:	
וויא מי	[°C]	[mg/l]	[µs/cm]	pH	ORP	NTU's	Арреага	nce
12:03	18.[11.43	3172	5,38	185.8	99.87	Tan	
12:10	18,0	1,38	3177	5 36	183.3	60.12	light tan	orange parte
12:16	18.4	1.30	3177	5 32	174 14	31.69	1	or unge pur m
2:21	18.4	0,25	3/7/	5.32	162 1-			
12:21	100		2108		163.5	25.74		
11-10	10.0	0.23	3185	5.31	156,1	22.48	†	
4-31	16.2	0.21	3/80	5,33	147.0	18.69		
12:36	16:2	0.20	3/19	5.29	14/ 3	11. 14		
12:41	18.4	0.19	217	5.29	125 11	10,11		
1/ 11	10.1	01//	31.65	J.01	135,4	12.52		
	=======================================							
				General Info	ormation	L		••
Weather	Condition:	Sanv	14 000	2/				
	0.		1					**************************************
Sample C	haracteristics:							

		771 VII - C	0 ()	1		., ,	2 7 2 7	127
Containe	rs/Amounts		Nacio logio	ca (2) 5	comp for	MOTALS	(2) 250mL7	For Floride
	Blino	yay) lica	te <	BD-1	2-1-22	16:0		
200000000	d/Observations	Wester	<i>I</i>		01.		<i></i>	
vecommen	d/Observations	WATEY	Brown O	range f	11ST pur	ge wat	er	
	·	mile						
-								
		//	1/0. ///	-	-			
	Collector	M	an W	4				
otabiji2a)	ion recommer	idations: Three	successive re	adings within	+/- 0.1 for pH,	+/- 3% for co	onductivity, +/- 10 mV	for ORP, and
		17-	- 10% for turbid	ell Casing Vo	umes[gal/#1	ın estimates*		
/2"=0.02		1"=0.	.041	2"=0	.164) 55	3"=0.	367 8"	'=1.469
3/4"=0.03	075	1 1/2"=	0.100	2 1/2"=	0.255	4"=0.		=1.409 !=2.611

Site	CO,	EN	100			Well Number	MW	-4
Collector/Ope	rator	A.Niv	en				7-100	
Evacuation da Method of eva Top of casing Top of casing Water level aff	to water	2-7-28 Peristan	14: 18 14: 18	50	ell Information Sampling date Method of sam Gallons per we Total gallons e	npling ell volume	2-7-22 Low	15:15 Elow 991
ГТТ	Temp	DO	Conductivity	Sample	e Data	T		
14:57 13:15:02 13:5:07 10:15:12 1.5	6. j	[mg/l] 9.51 2.10 1.87 1.83 1.73 1.55 1.47	[µs/cm] 30.76 30.68 30.65 30.65 30.53 30.63	pH 5,18 5,16 5,16 5,15 5,13 5,12 General Inf	ORP 204.1 215.7 234.6 226.0 227.1 231.6 233.6	NTU'S 6,20 6,37 5,22 4,99 5.06 5,84 6,19	Appe Clear	earance
Weather Con	dition:	Cloud	<i>Y</i>					
Sample Chara	cteristics:					(ē)		
Containers/Ar	nounts	(4)/L 1	lor Radiolog	pical o	(2)500mL	Er Metal	(A) A50,	mt for floride
Recommend/Obs	servations _							
Sampler/Colle Stabilization r	ector ecommer	Allandations: Three	10 /8 IOI LUIDIU	ity and DO. 1	mese are roud	+/- 3% for co	nductivity, +/- 10	mV for ORP, and
1/2"=0.0205 3/4"=0.03075		1"=0. 1 1/2"=	W€ 041	ell Casing Vo 2"╤0	lumes[gal/ft] .164) \$\int_{\text{0.255}}\$	3"=0.3 4"=0.6		6"=1.469 8"=2.611

Site COF	EN				Well Number	MW-0	15
Collector/Operator	A. Nil	ven			vveii Number		//
Evacuation date/time Method of evacuation Top of casing to water Top of casing to bottom Water level after evac	2-7-20 Peris 20:0 5.6	2 Stal tiz pum 03 4	Monitoring Wo	ell Information Sampling date Method of sar Gallons per w Total gallons	e/time mpling rell volume	2-7-22 Low t	14:00 Ton 191
Temp	DO	Conductivity	Sampl	e Data			
1°C1 13'21 17.3 13:25 17.5 13:25 17.5 13:33 17.3 13:33 17.3 13:41 17.5 13:45 17.5 13:49 17.3 13:54 17.2	[mg/l] 1,22 0,46 0,29 0,26 0,32 0,19 0,18 0,16	[µs/cm] 394/ 3980 4040 4067 4103 4135 4169 4192	6.60 6,61 6.60 6.59 6.59 6.57 6.57	ORP 198:4 189:0 182:2 178:3 172:8 167:5 162:4	NTU'S 10.89 10.78 9.87 7.29 7.95 9.73 5.63 3,11	Appe Clear Oran	arance age particle
	D +1	1/1	General Inf	152, 4	2.88		
Weather Condition: Sample Characteristics: Containers/Amounts	(2)/L to	Radiolog	ical (1)) 500mL 7	for Metal	(1) 250m1	food
Recommend/Observations							
Sampler/Collector Stabilization recommen	Mandations: Three	successive real 10% for turbid	adings within	+/- 0.1 for pH	, +/- 3% for co	onductivity, +/- 10	mV for ORP, and
1/2"=0.0205 8/4"=0.03075	1"=0. 1 1/2"=	041	ell Casing Vo 2"=0	lumes[gal/ft] .164) 5 5 =0.255	3"=0. 4"=0.	367	6"=1.469 8"=2.611

Site C//	FI					10/1/	
Collector/Operator	A.N	iven			Well Numbe	erMW'	6
Evacuation date/time Method of evacuation Top of casing to water Top of casing to bottom Water level after evac	2-7-6 Peristo		11140	ell Information Sampling date Method of sar Gallons per w Total gallons	e/time mpling rell volume	2-7-22 >W +1	low bggl
			Sampl	e Data			<i>*</i>
Temp	DO	Conductivity		T -	1	1	
[°C]	[mg/l]	[µs/cm]	pH	ORP	NTU's	Ap	pearance
11:54 13.0	6,45	79.	5.33	1210,6	7.48	Clear	
11.58 13.4	6.18	74.7	5.31	2114	741	1	
12:02 12.7	6.14	74,2	5.30	212 1	16 17	1-1	
12:06 73,2	5,94	73 5	5.28	114 9	1 (1)	 	
12.10 12.7	5.83	72.0	× 17	21/1	6,50	 	
10 11/10 0	= 11	130	5,21	d10:1	5.97		1
12.14 10.7	5.61	73.2	5.24	211,9	4.53		
12.18 12.9	5,52	13.9	5.24	219.8	4.48		
10-10/ 12.6	15,41	73.2	5.22	220.8	4.22		
12:26 13.1	5.22	73,0	5.21	222.1	4.72	 	
				0.04.	11,700		
			7		ļ		
			General In	formation		l	
Weather Condition:	Overci	ast coo	[wind	1/			
			/	/		-	
Sample Characteristics:					4		
		·	-				
Containers/Amounts	(3) 11_7	or Radiolog	izal 7	1) 500 ml to	Matel	(11 11-11 12	2-7-
A CONTRACTOR OF THE PROPERTY O		· Nathering	IZUI (1 JOUNT (07/118/4/5	(1) SOUME (orfloride
Recommend/Observations							
		TT TO THE TOTAL THE TOTAL TO THE TOTAL TOTAL TO THE TOTAL TOTAL TO THE					
- Comment of the comm	11/2	116-					
Sampler/Collector	Mariana: Th	non					
Stabilization recomme	nuations: inree +/-	successive re 10% for turbid	adings within	+/- 0.1 for pH	, +/- 3% for c	conductivity, +/-	10 mV for ORP, and
		W	ell Casing Vo	lumes[gal/ft]	jii estimates		
/2"=0.0205	1"=0.	.041	(2"=0	116455	3"=0).367	6"=1.469
/4"=0.03075	1 1/2"=	:0.100	2 1/2"	=0.255	4"=0).656	8"=2.611

MANAGEMENT SERVICES, INC.

Site COE	N				Well Number	MW-	- 10
Collector/Operator	A.Ni	ven					
Evacuation date/time Method of evacuation	2-7-0 Peristur	22 N	lonitoring We 1.25 P	Il Information Sampling date/ Method of sam	3.5	2-7-22 Low F	11:15
Top of casing to water	6.70	9 / . /		- Gallons per we			
Top of casing to bottom	22.44	4		- Total gallons ev	vacuated	2.2	5601
Water level after evac	6.78			•)	
			Sample	Data			
Temp [°C]	DO [mg/l]	Conductivity [µs/cm]	nLi	ORP	NTU's	Ann	aranco
11/40 12/	17 72-	1495	3,93	232,1	24/	7	earance
1111111 11 ()	MILL	1715	2011	720 9	170	clear	
11.44 16.0	11,46	1470	3.74	9391	0.10		
0.98 16,3	0.38	148/	3.94	251.4	1.25		
10.5x 10,4	0.30	14/3	3.94	265,4	2.50		
W.56 16.4	0.25	1457	3.95	271.9	1.85		
11:00 16.5	0.21	1443	395	281.5	1.60	7	
11:114 16.4	0,21	1428	395	2848	1,55		
11108 164	121	1423	395	2040	1.52		
11.00 10.1	6 10	11151	2 01	011.0	1150		
11.12 16:2	0,10	1721	3.95	310,4	1.0%		
L	1	ļ	L			ļ	
Weather Condition:	Church	+6001	General In	formation			
vveatner Condition,	(10010)	1000					
Sample Characteristics:							
***	COM	~ » J	1/	1 (1) FA	1.12	W. J. /	41217
Containers/Amounts	(X)/LI	or Madi	ologica	1 (1)000	IMP OLI	Metals (1) ASUML
	148						
Recommend/Observations							
	22				- the water did to		
Sampler/Collector	Ma	2 Ma	~				
Stabilization recomme	endations: Thre	e successive r /- 10% for turbi	eadings withi	n +/- 0.1 for ph	1, +/- 3% for a	conductivity, +/- 1	0 mV for ORP, and
	**	V	Vell Casing V	olumes[gal/ft]	yn esumates		
1/2"=0.0205).041	(2"=	0.160 PVC		0.367	6"=1.469
3/4"=0.03075	1 1/2":	=0.100	2 1/2	"=0.255	4"=	0.656	8"=2.611

EN			Well Number	MU	1-2
A. Niv	en				
4-27-22 Peristalt	9:35	_Sampling date	/time	4-27-22 60 in 19	10:15
8.	92 /	_ _Gallons per we			
- a	00	_ Total gallons e	evacuated	2.59	91
	Sampl	e Data			
		ORP	NTU's	/	arance
D. 40 81	5 482	223 1	627	Clear	
013/ 81	9 4.74	331.8	4,57	1	
0.26 8	45 4.69	324.6	3.17		
0.24 8	43 4.61	313,7	2.88		
0.22 83	32 4.59	303.7	2.55		
Sunny	General in	formation			
	•				
(1) 500 ml (or Metals (2)	12 for Ral	tio bgica	1 (1)/12 for	Wotlab
					-
	for turbidity and DO.	*these are rou			mV for ORP, and
1"=0.041	Well Casing V 2"=	olumes[gal/ft]	3"=0).367	6"=1.469 8"=2.611
	# - 27 - 22 Peristalt, 9 - 0 On Cone [mg/l] [µ On 6 (83 On 4 () 8 (On 26 8 (On 24 8 (On	9:35 Peristaltic Pump 3-92 3-9	Monitoring Well Information 9:35 Sampling date Method of san	Monitoring Well Information 9:35 Sampling date/time Method of sampling Gallons per well volume Total gallons evacuated	A . N Ven Monitoring Well Information 9:35 Sampling date/time Method of sampling Gallons per well volume Total gallons evacuated 7.5 g

	(A)	-1/						
Site	20 E	= N				Well Number	MW-3	3
Collector/Operato	or _	AN	Ven					
Evacuation date/t	ime	4-27-20	2	Nonitoring Wel	I Information Sampling date	/time	4-27-12	11:30
Method of evacua	-	Paris	taltic Du	mo	Method of sam	1.5	inut	Tow
Top of casing to v	_		4.74	wy)	Gallons per we	()	now I	0 110
Top of casing to b	_				Total gallons e	-	50	601
Water level after e	evac _		5.09				/	
I Tei	mp	DO	Conductivity	Sample	Data			
	C]	[mg/l]	[µs/cm]	pН	ORP	NTU's	Appe	arance
10:51 20	1.5	17-28	2071	5.20	77.2	30.22	1. 11.4	an
10:56 20	(5	1.22	2255	5,31	56.1	17.30	Elear	
11.01 20	5	0.19	2247	524	46 1	11.22	1	
11:06 20	6	11.17	2227	6 25	39.7	14 25	- 1	
11 11 20	5	0.16	7044	7 24	36.3	17.03		Rem partick
11:11	5	115	2127	577	007	10.00	- 1	Brown particle
11-16 20, 11-21 20.	-	1 17	2121	5.33	34,2	10,80		
11 00 0	[0012	20 Al	0,00	27.0	16.57		
M:26 20.	· b	0.13	30.17	5.35	3/19	18.40		
					,			
Weather Condit	tion:	Sanny	· Clear	General Info	rmation			
Sample Characte	eristics:							
				0 NP 0	<u> </u>	. /	2	
Containers/Amo	plicate	(2)500ML BD-1	13/ Meto	15 (4) 1 17-22	L Radiolo	ogica l	(a) 14 (br	wetlab
Recommend/Obser	vations _	heavy l	brown sil	1 first	purge V	vater,	odor	
					, .			
Sampler/C-III4			_					
Sampler/Collecte Stabilization rec			successive re					mV for ORP, and
4/01- 0.0005			W	ell Casing Vo	lumes[gal/#]			
1/2"=0.0205 3/4"=0.03075		1"=0. 1 1/2"=		2"=0	0.255	3"=0 4"=0		6"=1.469 8"=2.611
								J 2.011

Site	N				Well Number	MW-	4
Collector/Operator	A. Nive	N					
Evacuation date/time Method of evacuation Top of casing to water Top of casing to bottom Water level after evac	4-26-22 Peristal	tic pam 52	f	Sampling date/t Method of samp Gallons per wel Total gallons ev	l volume	4-26-22 Lou Plo 3.09	-
Temp	DO I	Conductivity	Sample	Data			
19'94 19,5 14'49 19 0	[mg/l] (), 60 () 20	[µs/cm] 2948	рн 5.02 4.98	204.7	NTU's 0,82	Appea Clear	rance
14.54 19.2 14.59 19.5	0.22	2932	4.95	227.7	1.06		
15-04 19.3	0.16	2922	4.94	228,7	1.70		
			1				
Weather Condition:	Partly	Ctondy	General Inf	ormation			
Sample Characteristics:							
Containers/Amounts	(2) 500 ml t	er Metals	(4)/L	for Radiolog	ncat (DIL for Wet	lab
Recommend/Observations							
Sampler/Collector Stabilization recomme	ndations: Three s	10% for turbic	dity and DO.	these are roug	, +/- 3% for o	conductivity, +/- 10	mV for ORP, and
1/2"=0.0205 3/4"=0.03075	1"=0.0 1 1/2"=0	41		0.164 = 0.255).367).656	6"=1.469 8"=2.611

Site COE	N				Well Number	MW-	5
Collector/Operator	A.Niv	en					
Evacuation date/time Method of evacuation Top of casing to water Top of casing to bottom	4-26-22 Peristal 6:10	Mon tic Pump	D:30	Information Sampling date/ Method of sam Gallons per we Total gallons ev	pling Il volume	4-26-22 10 w f	13:20 Tou
Water level after evac		0	Sample	Data			
Temp [°C] 20,0 12:56 20,1 13:01 20,2 13:10 19,9 13:17 19,8	[mg/l] 0.38 2 0.27 3 0.21 3 0.18 3	3665 6 3738 6 3775 6 3807 6	pH 5.56 .56 .55 .55 .55	0RP 104.8 92.2 86.2 80.7 76.6 74.1	NTU'S 9,05 6.26 3.28 3,10 4,70 7,41	Appe C/ear	arance
Weather Condition:	Par	tly Chi	eneral Info	ormation			
Sample Characteristics:							
Containers/Amounts	(1)500mL fo	er Metals	(2) 1/2	tos Radioli	sgical (1)	IL for Weth	ab
Recommend/Observations							-
Sampler/Collector Stabilization recomme	endations: Three su +/- 10	0% for turbidity	and DO. *	these are rou	l, +/- 3% for o	conductivity, +/- 10) mV for ORP, and
1/2"=0.0205 3/4"=0.03075	1"=0.04 1 1/2"=0. <i>′</i>	1	2 "=0	lumes[gal/ft] 0.164 55 =0.255		0.367 0.656	6"=1.469 8"=2.611

	1400	/ . /						,
Site	COE	N				Well Number	MW-E	2
Collector/6	Operator	_A.Ni	ven					
Method of	n date/time	4-26-22 Perist	aftic pur	Monitoring We	Sampling date/ Method of sam	pling	4-26-22 Join Flo	12:15
	sing to water		65	<i>y</i> .	Gallons per we		056	a1
Top of cas	sing to bottom	- 61	/ /		Total gallons e	vacuated	3.07	91
Water leve	el after evac	4.0	//	Sample	Data			
	Temp	DO	Conductivity	Campic	T	T I		
	[°C]	[mg/i]	[µs/cm]	pН	ORP	NTU's	Appea	arance
11 38	19.3	1.74	79.5	5.06	213.7	0.64	Clear	
11:43	19.3	1,44	73.9	5.02	218.9	0.42	į	
11:48	19.2	1.42	72.9	4.98	224,6	0.48	1	
11:53	19.3	1.44	72.4	4.96	229.6	0.37		
11.58	194	1.46	72.1	4.94	236.4	0.46	1	
12:63	19.4	1,47	72.0	4.98	239.6	0.43	j	
12.08	19.6	1.48	71.6	4.91	243.7	0.45	1	
100 0	11.0	1.10	1110	1.11	1000	0.15		
		225	1 1	General In	l formation			
Weather	Condition:	C1	oudy					
Sample C	Characteristics:							
Containe	ers/Amounts	(1)500m	12 Gr Myt	tals (2)	1- for Rai	diológico	d (1) /2 18	wetlab
Recomme	nd/Observations							
Sampler. Stabiliza	/Collector ation recomme	ndations: Thre	e successive ro	eadings withi	n +/- 0.1 for ph	H, +/- 3% for one	conductivity, +/- 10	mV for ORP, and
			V	Vell Casing V	olumes[gal/ft]	J		
1/2"=0.03 3/4"=0.03).041 =0.100	<2"=	:0.16455 =0.255		0.367 0.656	6"=1.469 8"=2.611

Site LOE	N			Well Number	MW-10
Collector/Operator	A.Niven			·	
Evacuation date/time	4-26-22	Monitoring We	II Information Sampling date/	'time	4-26-22 10:45
Method of evacuation	Peristaltic po	mp	Method of sam	pling	Lowtlow
Top of casing to water	10.93/	/	Gallons per we	ll volume	
Top of casing to bottom			Total gallons ev	vacuated	1.25691
Water level after evac	10.95		·		
Temp	DO Conductivit	Sample	Data	1	
[°C]	[mg/l] [µs/cm]	pH	ORP	NTU's	Appearance
1023 18.1	6.47 1651	3.71	329.5	0.82	Clear
10:28 18.1	0.35 1646	3.72	342.4	0.65	
10:33 18.0	0.30 1643	3.73	344.8	0.77	
10:38 18.1	0.28 1636	272	346.7	097	
10:43 18.0	0.26 1628	374	352.9	114	
10.12	0120 1020	19-11	3000	11.6	
	* * * * * * * * * * * * * * * * * * *	General In	formation		
Weather Condition:	overcas t				
0					
Sample Characteristics:					
Containers/Amounts	(1)500mL for Me	als (2) 1	for Rad	iologica	(1)11- For Wetlab
				<i></i>	
D					
Recommend/Observations	S 				
Sampler/Collector					
					conductivity, +/- 10 mV for ORP, and
	+/- 10% for tur	bidity and DO. Well Casing V		gh estimates	*
1/2"=0.0205	1"=0.041	vven casing v	0.164 PVC	3"=0	0.367 6"=1.469
3/4"=0.03075	1 1/2"=0.100		=0.255		0.656 8"=2.611

Site COE	N			Well Number	MW	1-02
Collector/Operator	A. Niven			_ ven vanser		00 -
Evacuation date/time Method of evacuation Top of casing to water Top of casing to bottom	Monitoring We 10:14 Dump	Sampling date Method of sam Gallons per we	npling ell volume	9-23-22 Lowt	11:00 Tow	
Water level after evac	10,33		= 1	···	<u> </u>	
Temp [°C] 10:32 22.5 10:37 22.4	DO Conductiv [µs/cm] 0 , 75 542 0 , 45 600		ORP -34,6 -14,5	NTU's 13.39	Clear	oppearance Odor
10:42 02.4 10:47 22.4 10:52 22.3	0.39 640 0.35 699 0.33 724 0.31 746	4.36 4.27 4.23	-6.9 -0.8 2.7 5.7	7.79 10.99 14.72 21.89		
11:02 22.4 11:07 22.4 11:12 22.1	0,29 760 0,29 767 0,28 767	4.20	7,4 7,9 5,4	29,99 40,31 48,31		
Weather Condition: Sample Characteristics:	tew clouds	General Int	formation DIEELL			
Containers/Amounts	(1) 500 ml for M	etals (1)	11 Plasti	ic for We	र्नीवर् <u>ठ</u> (१	2)/1_ Plostic
Recommend/Observations						
Sampler/Collector Stabilization recommend	ndations: Three successive	e readings within				/- 10 mV for ORP, and
1/2"=0.0205 3/4"=0.03075	1"=0.041 1 1/2"=0.100	Well Casing Vo		3"=0 4"=0	.367	6"=1.469 8"=2.611

	1									
Site	EN				_Well Number	MW-3				
Collector/Operator	_1/	11/on								
Evacuation date/time	9-23-22	8:37	Ionitoring We	II Information Sampling date	time	9-23-22 9:20				
Method of evacuation	Method of evacuation Peristaltic Pamp Method of sampling Low Plans									
Top of casing to water 5,15' Gallons per well volume										
Top of casing to bottom 17.70′ Total gallons evacuated 1.5 a.a./										
Water level after evac	- 3	32			7.6	1.094				
		57	Sample	Data						
Temp	DO	Conductivity								
[°C]	[mg/l]	[µs/cm]	pН	ORP	NTU's	Appearance				
8:52 25.0	0.52	2783	5.30	-75.1	56,02	Ton				
8.57 25.1	1.44	2765	5.31	-928	32,70					
0.02 25.2	139	2747	6 21	100 6	10 +1	light tan				
7.02 000	0170	2/1/	0,75	-102.0	17,71	light tan				
9:0/ 05.0	0,35	1742	5,34	-104,1	15,82					
9:12 85.3	0.31	2733	5.33	-1029	12,15	Llear				
9 17 25 4	1,3/2	2725	5.33	-105,9	10,93					
7.17 4011	0130	0100	0,00	10011	10112	· · · · · · · · · · · · · · · · · · ·				
	0. 41	, , 6 /	General Inf	ormation						
Weather Condition:	rarry	1 cloudy	25°C							
0 10 11										
Sample Characteristics:										
Containers/Amounts	(2) 61	n. I Plant	in to M.	1-1 12	11 Pl. 27	to to Wattak				
Containers/Amounts	(4) 11	10 mL 1105Ti Plastic A	COCNE	ological	12/10/5/1	ictor WeTlab				
	(1)16	1105116 1	of Kagi	1091241		-				
Recommend/Observations										
<u> </u>										
0 1.70 11.4										
Sampler/Collector	ndations: Three	euccessive re	adings within	±/ 0.1 for n⊔	+/ 20/ for o	onductivity, +/- 10 mV for ORP, and				
Clabilization reconfille		- 10% for turbic								
			ell Casing Vo							
1/2"=0.0205	1"=0	.041	2"=0	16455	3"=0					
3/4"=0.03075	1 1/2"=	=0.100	2 1/2"	=0.255	4"=0	.656 8"=2.611				

Site COL	EM			Well Number	MW-0	14				
Collector/Operator	ANIV	en W, l	Vashir	nstan						
Evacuation date/time	9-22-22 Monitoring Well Information 14:38 Sampling date/time 9-22-32 15									
Method of evacuation	Peristal 1	ic pump	Method of samp	pling	Low	Flow				
Top of casing to water	6MM	24/9.24/	Gallons per wel	ll volume	2.05					
Top of casing to bottom			Total gallons ev	/acuated	2.259	99/				
Water level after evac		Sample	Data		***					
Temp	DO Co	onductivity	Jata							
[°C]	[mg/l]	[µs/cm] pH	ORP	NTU's	Appe	arance				
14:49 25,7	0.40 8	1371 5,13	14.3	0,66	Clear					
14:54 25,9	0,34 2	319 5.09	16,3	0.80	1					
14:58 25 5	0.31 2	285 5.08	11.9	1.73		1.67				
15.03 256	0 27 2	250 5.07	6.9	5.00						
15:08 25.8	0.26	7238 5,06	38	8,12	i					
12.00 00.0	O TOTAL	NO STOR	7.0	Unio						
	Ť									
	19									
Weather Condition:	SUN	General In	formation OUAS	light	preeze	2				
Sample Characteristics:		/		054						
Sample Characteristics.										
Containers/Amounts	Containers/Amounts & Blind Guglicate & SD-1 9-22-22 12:00> (2) 500 m/ for Metals (2) 14 Plastic for Wellop (4) 14 for Radio 10016									
Recommend/Observations			•							
Sampler/Collector Stabilization recomme		ccessive readings withi % for turbidity and DO.	*these are roug			mV for ORP, and				
1/2"=0.0205	1"=0.041	Well Casing-V	olumes[gal/ft] 0./164	3"=0	0.367	6"=1.469				
3/4"=0.03075	1 1/2"=0.1		"≡0.255		0.656	8"=2.611				

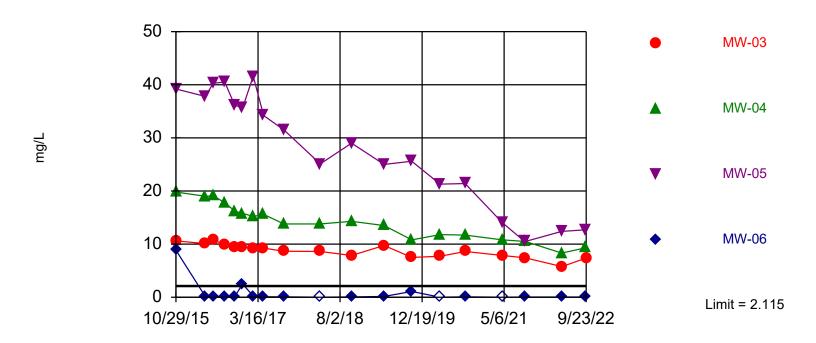
Site	LOE	N				_Well Number	MW-5
Collector	/Operator	A. Niven	Willa	shington			
	on date/time	09/22/2 Peristo	2 1:30 p	Monitoring We	II Information Sampling date Method of sam		09/22/12 2:05 pm
	sing to water	_17/12/9	6.74.51	F	Gallons per we		
•	sing to bottom	20	0,00		_ Total gallons e	evacuated	2 /2 Gallons
Water lev	el after evac	6.87	- ++	Sample	- Data		
	Temp [°C]	DO [mg/l]	Conductivity [µs/cm]	рН	ORP	NTU's	Appearance
1:35A		0.33	2963	6.50	108.1	1.24	Clear
	m 27.4	0.30	2977	6.50	11.6	2.20	Clear
1:45	27.5	0.29	3015	6.50	0.2	4.82	Clear
1:50	27.5	0,27	3568	6.50	-10:4	6.09	Cleas
1.55	27.6	0.27	3581	6.50	-17.9	9.41	Clear
2:00	27,5	0.26	3603	6.49	-27.6	13-91	Clear
			-			-	
144 41	0 1:::		21. 1.	General In			
Weather	Condition:	Sunny	, (lond)	المالية المالية			
Sample (Characteristics:				76		
Containe	ers/Amounts	(1)500m	L for meta	13 (1) 1L for	wet Lai	b (2) 11 for radiologica
Recomme	nd/Observations						
	/Collector	ndations: Thro	e encessive a	eadings within	1 +/- 0 1 for 5	1 +/- 3% for	conductivity, +/- 10 mV for ORP, and
Glabiliza	auon reconnine		/- 10% for turbi	dity and DO.	*these are rou		
1/2"=0.0 3/4"=0.0			V).041 =0.100		olumes[gal/ft] 0.164 '=0.255		0.367 6"=1.469 0.656 8"=2.611

Site COE	-N				Well Number	MW-6	
Collector/Operator	A. Niven	W. Was	hington.				
		N	∬ //onitoring We	ell Information			
Evacuation date/time	12:00 DM	-0.	_	Sampling dat		09-22-22	12:45 pm
Method of evacuation	Decistali	1		_ _Method of sa	mpling	low flow	
Top of casing to water	444			_ Gallons per v	vell volume	1	
Top of casing to bottom	17.75 8	†		Total gallons	evacuated	2 gal	
Water level after evac	4.37			_		Ų ÷	
Temp	DO	Conductivity	Sample	e Data	- i	,	-
[°C]	[mg/l]	Conductivity [µs/cm]	pН	ORP	NTU's	Appe	earance
12:30on 24.60C	1.79	74.6	4.72	93.1	0.97	Clear	
12:3500 2450	1.18	14.3	4.71	89.7		Clear	
20 17	 		4.71	87.4	0.62		
12.40ph 24.7	1:77	74.2	7172	101.7	0.58	Clear	
			General in	formation			
Weather Condition:	Sugar	/ Light					
Weather Condition.	Journ	y , cight	Witte ,	Dalmy))
Sample Characteristics:	Clear						
	1110		T The	11	-	(2)	12600 1
Containers/Amounts	(1) 30	DD ML for	Metals	, (34) At	or west	196 /(2)	12 for Radiolo
Recommend/Observations							
Sampler/Collector	A. Niver	r Wi	Uhshing;	Aon			
Stabilization recomme	endations: Three	e successive re	eadings withi	n +/- 0.1 for p	H, +/- 3% for	conductivity, +/- 1	0 mV for ORP, and
	+/-	- 10% for turbi V		"these are ro olumes[gal/ft			
1/2"=0.0205	1"=0	.041	(2"=	0.164) 55	3"=	0.367	6"=1.469
3/4"=0.03075	1 1/2"=	=0.100	2 172	"=0.255	4"=	0.656	8"=2.611

(1)	EN	,			Well Number	MW-	- 10
Site Collector/Operator	A.N.	'v ZN	W. Wa	Shing		1 1000	
Collector/Operator					• / (
Evacuation date/time	9-22.26	ζ ,	Nonitoring We	Il Information Sampling date	/time	9-22-22 Low FI	11-30
Method of evacuation	Peris	taltic		Method of sam	pling	Lowfi	over
Top of casing to water	12.0	25		- Gallons per we		<i>t</i> :	
Top of casing to bottom	32-4	75		Total gallons e	vacuated	aid5	79/
Water level after evac	1213	7	Sample	Data			
Temp	DO	Conductivity	Sample	Data		Ī	
[°C]	[mg/l]	[µs/cm]	pН	ORP	NTU's	Appea	rance
10:52 23.0	1,43	765	3.81	217.9	0.29	clean	
10:57 22.6	0,49	1110	3.75	185,0	0,88	1	
11:03 82.5	0,36	1130	3,75	164,3	3.75		
11.08 22.4	0.32	1111	376	159.4	5.75		
11:13 22 4	10,30	1258	3.76	154.1	9,35	, £	pubblesintle
1118 224	1029	1220	277	147.6	11.00	1 /	1
11:23 22.4	10.00	195	3 77	1478	9.41		-
11.00 -0 11	6.01	1202	277	117.0	115	1	1
11.28 2d. 4	0.26	1000	3.71	1711	11.50		
			L				
Weather Condition:	San	ny clea	General In	ormation M			
Sample Characteristics		/	Y				
				900 at	/2/91	. 0 /	,
Containers/Amounts	(1) 1/2	Phistic	Wetn	1/2 (2)	L Plasi	t.c Kadiolo	gian!
Containers// (nounts	(1) 5/10	mL Pla	stic Me				
				7			
Recommend/Observations							
Sampler/Collector							
Stabilization recomm	endations: Thre	e successive r	eadings withi	n +/- 0.1 for pl	H, +/- 3% for	conductivity, +/- 10	mV for ORP, and
	+	-/- 10% for turb		*these are rou elumes[gal/ft]	ugn estimate	9S"	
1/2"=0.0205	1"=	0.041	L 2"=	0.164		=0.367	6"=1.469
3/4"=0.03075	1 1/2'	'=0.100	2 1/2	"=0.255	4":	=0.656	8"=2.611

APPENDIX B

Statistical Analysis

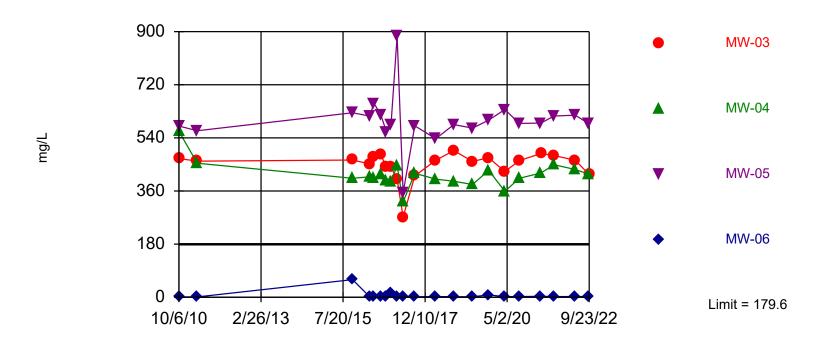

Prediction Limit

	RD M	orrow Generating	Facility Clier	nt: Cooperative E	nergy Dat	a: RD M	orrow (Gen Prir	nted 11/14/2022,	11:07 AM	
Constituent	<u>Well</u>	Upper Lim.	Lower Lim.	<u>Date</u>	Observ.	Sig.	Bg N	%NDs	<u>Transform</u>	<u>Alpha</u>	Method
Boron (mg/L)	MW-03	2.115	n/a	9/23/2022	7.38	Yes	19	0	No	0.00188	Param Inter 1 of 2
Boron (mg/L)	MW-04	2.115	n/a	9/22/2022	9.32	Yes	19	0	No	0.00188	Param Inter 1 of 2
Boron (mg/L)	MW-05	2.115	n/a	9/22/2022	12.7	Yes	19	0	No	0.00188	Param Inter 1 of 2
Boron (mg/L)	MW-06	2.115	n/a	9/22/2022	0.055	No	19	0	No	0.00188	Param Inter 1 of 2
Calcium (mg/L)	MW-03	179.6	n/a	9/23/2022	416	Yes	21	0	No	0.00188	Param Inter 1 of 2
Calcium (mg/L)	MW-04	179.6	n/a	9/22/2022	417	Yes	21	0	No	0.00188	Param Inter 1 of 2
Calcium (mg/L)	MW-05	179.6	n/a	9/22/2022	588	Yes	21	0	No	0.00188	Param Inter 1 of 2
Calcium (mg/L)	MW-06	179.6	n/a	9/22/2022	2.19	No	21	0	No	0.00188	Param Inter 1 of 2
Chloride (mg/L)	MW-03	246.5	n/a	9/23/2022	137	No	19	0	No	0.00188	Param Inter 1 of 2
Chloride (mg/L)	MW-04	246.5	n/a	9/22/2022	125	No	19	0	No	0.00188	Param Inter 1 of 2
Chloride (mg/L)	MW-05	246.5	n/a	9/22/2022	175	No	19	0	No	0.00188	Param Inter 1 of 2
Chloride (mg/L)	MW-06	246.5	n/a	9/22/2022	7.75	No	19	0	No	0.00188	Param Inter 1 of 2
Fluoride (mg/L)	MW-03	1.024	n/a	9/23/2022	0.25ND	No	24	4.167	No	0.00188	Param Inter 1 of 2
Fluoride (mg/L)	MW-04	1.024	n/a	9/22/2022	0.25ND	No	24	4.167	No	0.00188	Param Inter 1 of 2
Fluoride (mg/L)	MW-05	1.024	n/a	9/22/2022	0.25ND	No	24	4.167	No	0.00188	Param Inter 1 of 2
Fluoride (mg/L)	MW-06	1.024	n/a	9/22/2022	0.25ND	No	24	4.167	No	0.00188	Param Inter 1 of 2
pH (SU)	MW-03	5.114	3.557	9/23/2022	5.33	Yes	47	0	No	0.000	Param Inter 1 of 2
pH (SU)	MW-04	5.114	3.557	9/22/2022	5.06	No	47	0	No	0.000	Param Inter 1 of 2
pH (SU)	MW-05	5.114	3.557	9/22/2022	6.49	Yes	47	0	No	0.000	Param Inter 1 of 2
pH (SU)	MW-06	5.114	3.557	9/22/2022	4.71	No	47	0	No	0.000	Param Inter 1 of 2
Sulfate (mg/L)	MW-03	792.6	n/a	9/23/2022	1640	Yes	43	0	No	0.00188	Param Inter 1 of 2
Sulfate (mg/L)	MW-04	792.6	n/a	9/22/2022	1670	Yes	43	0	No	0.00188	Param Inter 1 of 2
Sulfate (mg/L)	MW-05	792.6	n/a	9/22/2022	1770	Yes	43	0	No	0.00188	Param Inter 1 of 2
Sulfate (mg/L)	MW-06	792.6	n/a	9/22/2022	12.1	No	43	0	No	0.00188	Param Inter 1 of 2
Total Dissolved Solids [TDS] (m	MW-03	1397	n/a	9/23/2022	3253	Yes	38	0	No	0.00188	Param Inter 1 of 2
Total Dissolved Solids [TDS] (m	MW-04	1397	n/a	9/22/2022	3167	Yes	38	0	No	0.00188	Param Inter 1 of 2
Total Dissolved Solids [TDS] (m	MW-05	1397	n/a	9/22/2022	4130	Yes	38	0	No	0.00188	Param Inter 1 of 2
Total Dissolved Solids [TDS] (m	MW-06	1397	n/a	9/22/2022	63	No	38	0	No	0.00188	Param Inter 1 of 2

Exceeds Limit: MW-03, MW-04, MW-05

Prediction Limit

Interwell Parametric


Background Data Summary: Mean=1.494, Std. Dev.=0.3107, n=19. Insufficient data to test for seasonality; not deseasonalized. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.917, critical = 0.863. Kappa = 1.999 (c=7, w=4, 1 of 2, event alpha = 0.05132). Report alpha = 0.007498. Individual comparison alpha = 0.00188. Comparing 4 points to limit.

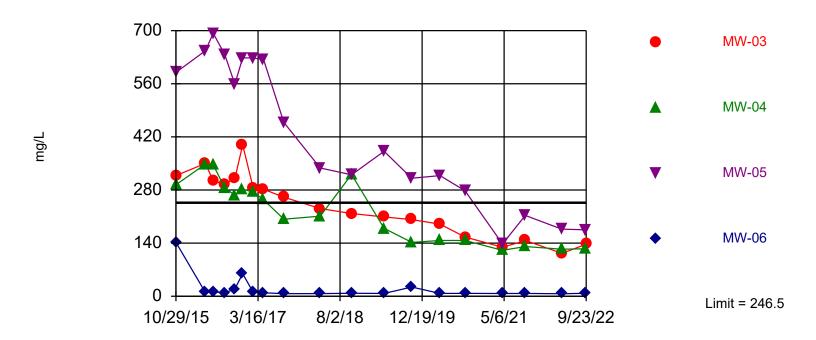
Constituent: Boron Analysis Run 11/14/2022 11:05 AM View: Landfill AppIII

 Exceeds Limit: MW-03, MW-04, MW-05

Prediction Limit

Interwell Parametric

Background Data Summary: Mean=117.2, Std. Dev.=31.73, n=21. Insufficient data to test for seasonality; not deseasonalized. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.926, critical = 0.873. Kappa = 1.965 (c=7, w=4, 1 of 2, event alpha = 0.05132). Report alpha = 0.007498. Individual comparison alpha = 0.00188. Comparing 4 points to limit.


Constituent: Calcium Analysis Run 11/14/2022 11:05 AM View: Landfill AppIII

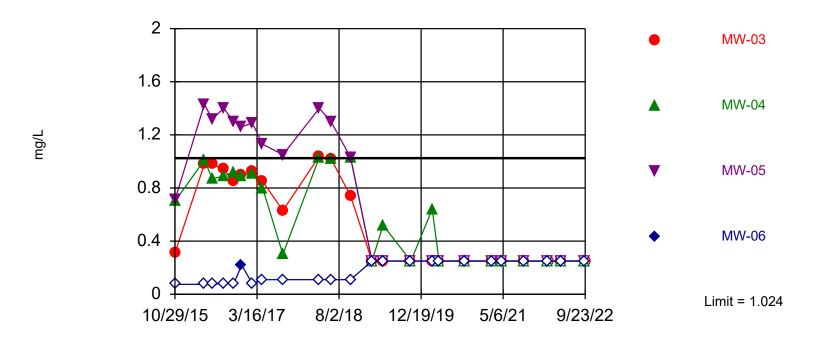
RD Morrow Generating Facility Client: Cooperative Energy Data: RD Morrow Gen

Within Limit

Prediction Limit

Interwell Parametric

Background Data Summary: Mean=168, Std. Dev.=39.28, n=19. Insufficient data to test for seasonality; not deseasonalized. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.9312, critical = 0.863. Kappa = 1.999 (c=7, w=4, 1 of 2, event alpha = 0.05132). Report alpha = 0.007498. Individual comparison alpha = 0.00188. Comparing 4 points to limit.

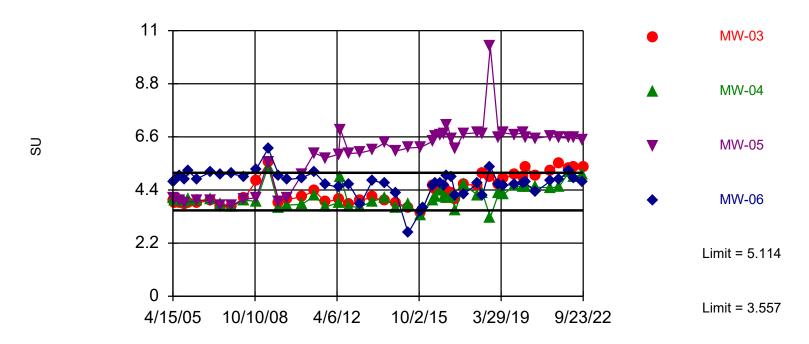

Constituent: Chloride Analysis Run 11/14/2022 11:05 AM View: Landfill AppIII

RD Morrow Generating Facility Client: Cooperative Energy Data: RD Morrow Gen

Within Limit

Prediction Limit

Interwell Parametric


Background Data Summary: Mean=0.5983, Std. Dev.=0.2212, n=24, 4.167% NDs. Insufficient data to test for seasonality; not deseasonalized. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.9677, critical = 0.884. Kappa = 1.927 (c=7, w=4, 1 of 2, event alpha = 0.05132). Report alpha = 0.007498. Individual comparison alpha = 0.00188. Comparing 4 points to limit.

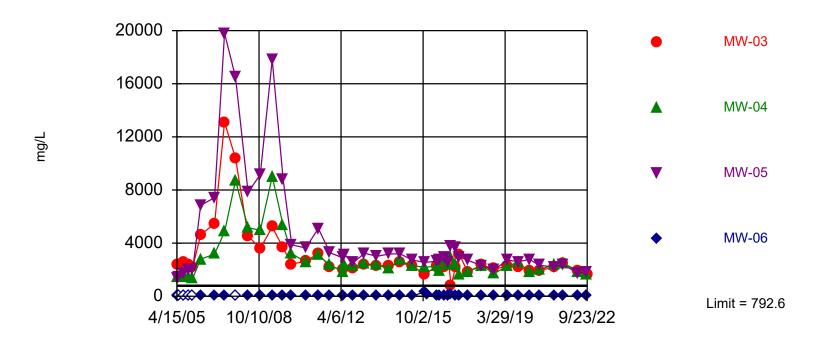
Constituent: Fluoride Analysis Run 11/14/2022 11:05 AM View: Landfill AppIII

 Exceeds Limits: MW-03, MW-05

Prediction Limit

Interwell Parametric

Background Data Summary: Mean=4.335, Std. Dev.=0.43, n=47. Seasonality was not detected with 95% confidence. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.9697, critical = 0.928. Kappa = 1.81 (c=7, w=4, 1 of 2, event alpha = 0.05132). Report alpha = 0.007498. Individual comparison alpha = 0.0009398. Comparing 4 points to limit.

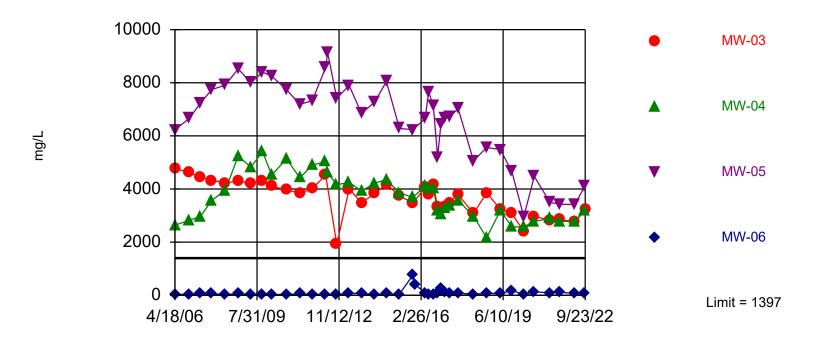

Constituent: pH Analysis Run 11/14/2022 11:05 AM View: Landfill AppIII

RD Morrow Generating Facility Client: Cooperative Energy Data: RD Morrow Gen

Exceeds Limit: MW-03, MW-04, MW-05

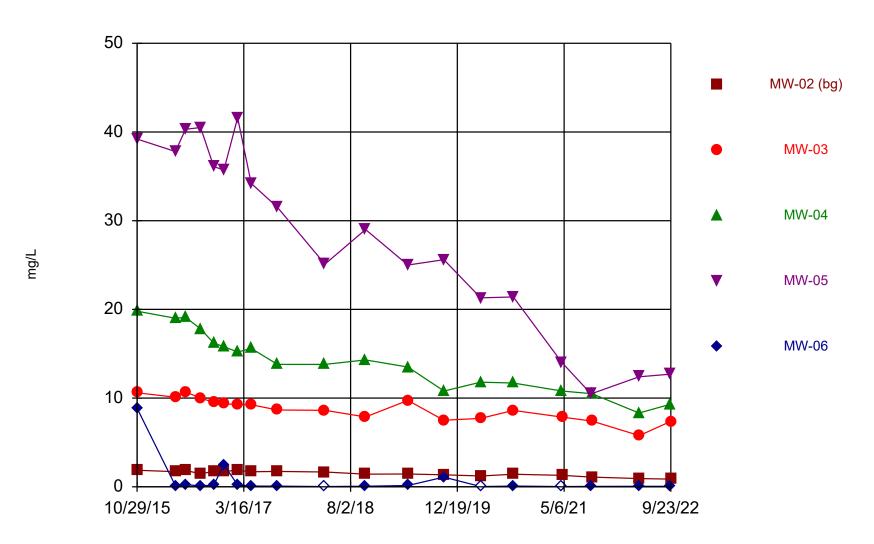
Prediction Limit

Interwell Parametric

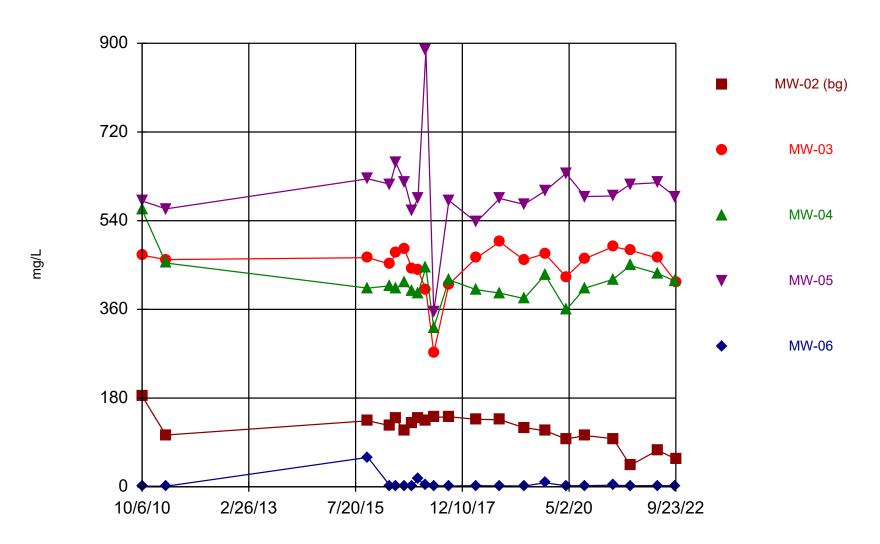

Background Data Summary: Mean=537.6, Std. Dev.=140.1, n=43. Seasonality was not detected with 95% confidence. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.9562, critical = 0.923. Kappa = 1.82 (c=7, w=4, 1 of 2, event alpha = 0.05132). Report alpha = 0.007498. Individual comparison alpha = 0.00188. Comparing 4 points to limit.

Constituent: Sulfate Analysis Run 11/14/2022 11:05 AM View: Landfill AppIII

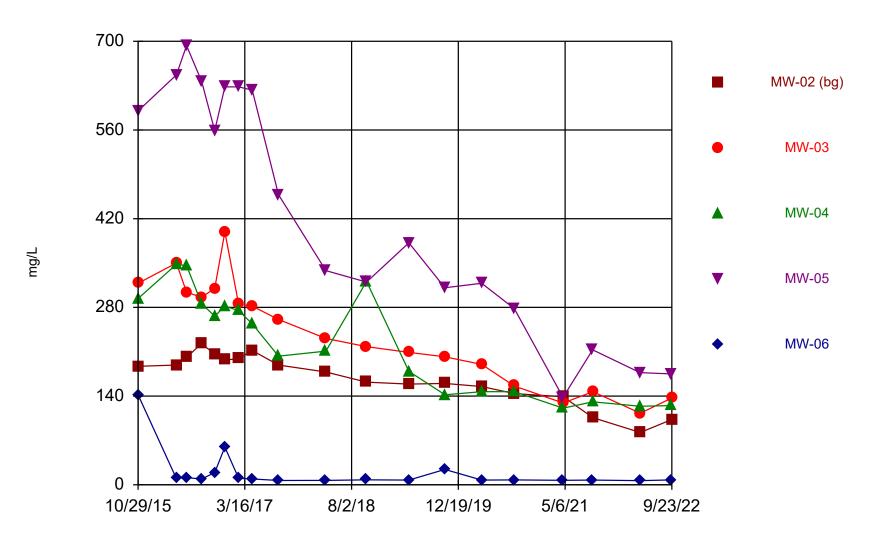
 Exceeds Limit: MW-03, MW-04, MW-05

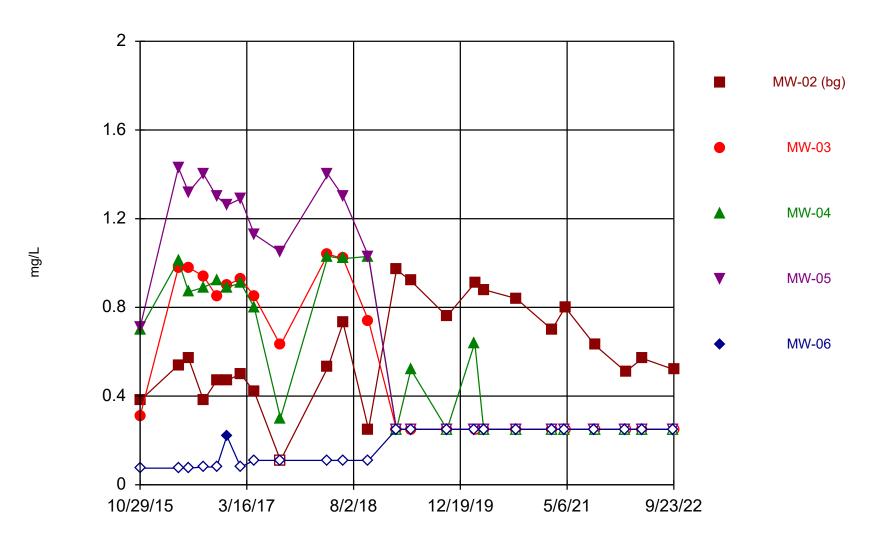

Prediction Limit

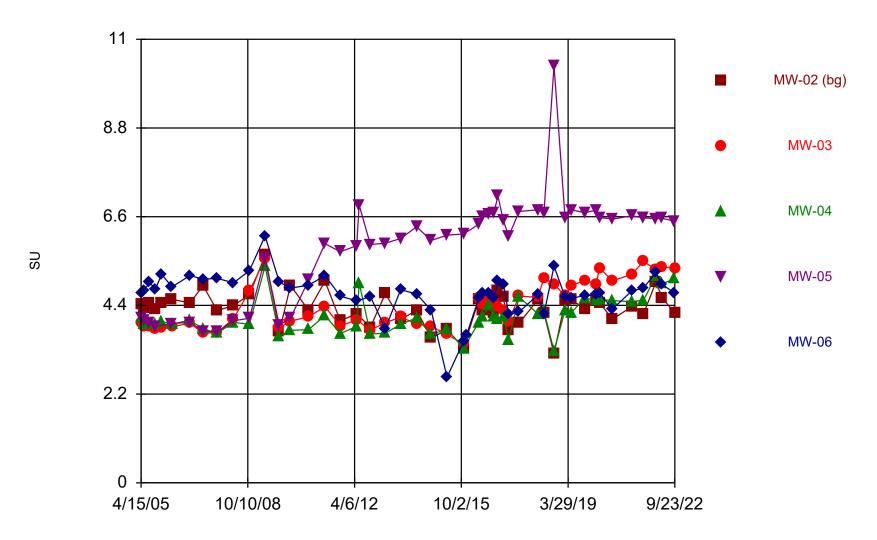
Interwell Parametric

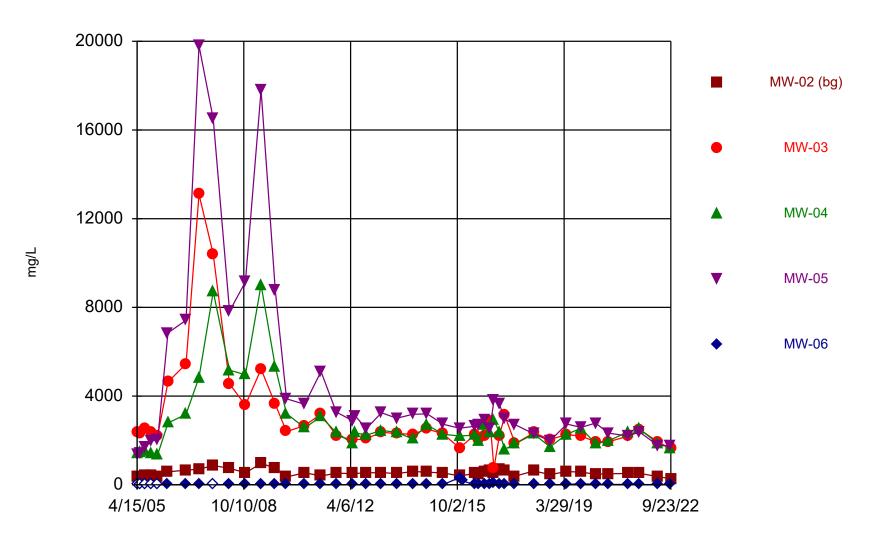


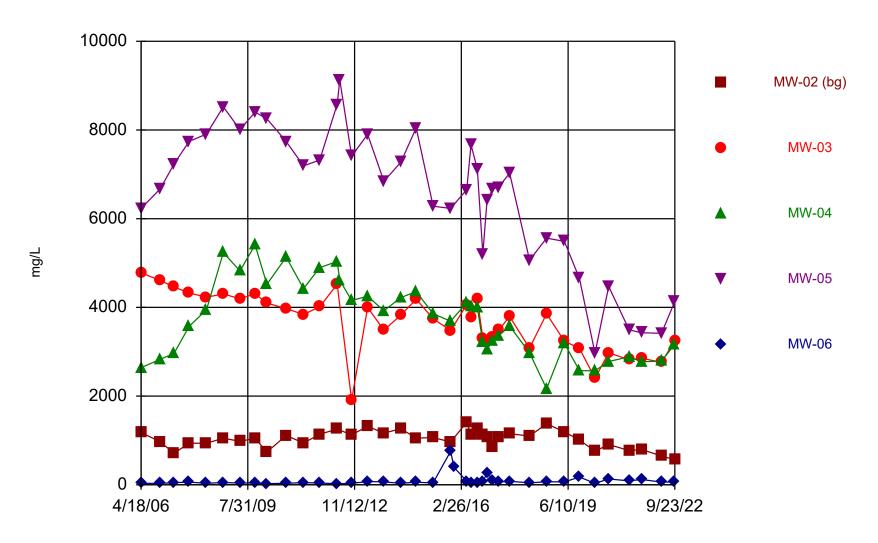
Background Data Summary: Mean=1031, Std. Dev.=199.6, n=38. Insufficient data to test for seasonality; not deseasonalized. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.9752, critical = 0.916. Kappa = 1.836 (c=7, w=4, 1 of 2, event alpha = 0.05132). Report alpha = 0.007498. Individual comparison alpha = 0.00188. Comparing 4 points to limit.


Constituent: Total Dissolved Solids [TDS] Analysis Run 11/14/2022 11:05 AM View: Landfill AppIII RD Morrow Generating Facility Client: Cooperative Energy Data: RD Morrow Gen


Constituent: Boron Analysis Run 11/11/2022 1:05 PM View: Landfill AppIII

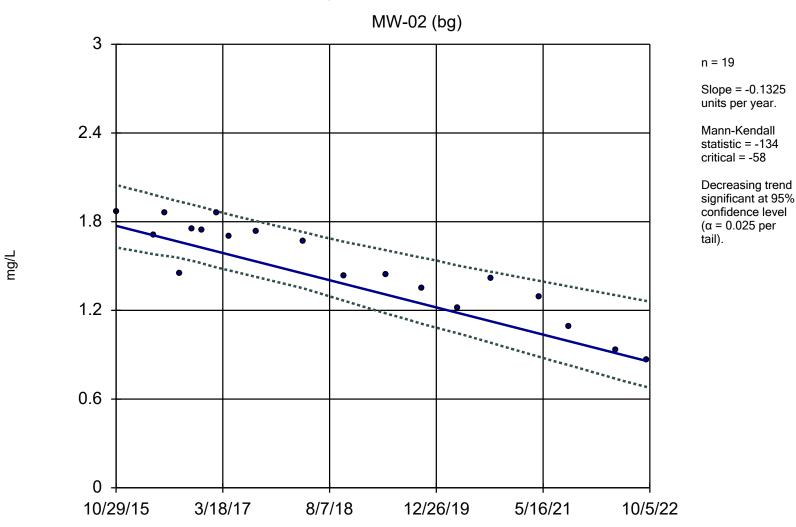

Constituent: Calcium Analysis Run 11/11/2022 1:05 PM View: Landfill AppIII RD Morrow Generating Facility Client: Cooperative Energy Data: RD Morrow Gen


Constituent: Chloride Analysis Run 11/11/2022 1:05 PM View: Landfill AppIII RD Morrow Generating Facility Client: Cooperative Energy Data: RD Morrow Gen

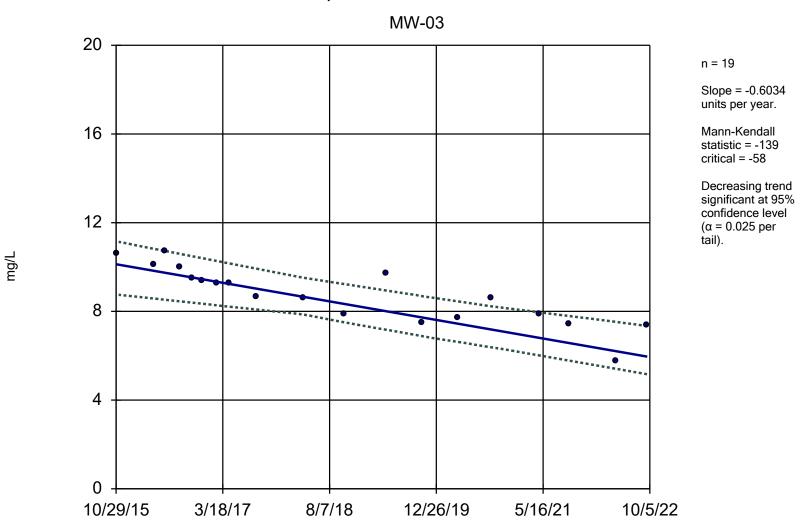

Constituent: Fluoride Analysis Run 11/11/2022 1:05 PM View: Landfill AppIII

Constituent: pH Analysis Run 11/11/2022 1:05 PM View: Landfill AppIII RD Morrow Generating Facility Client: Cooperative Energy Data: RD Morrow Gen

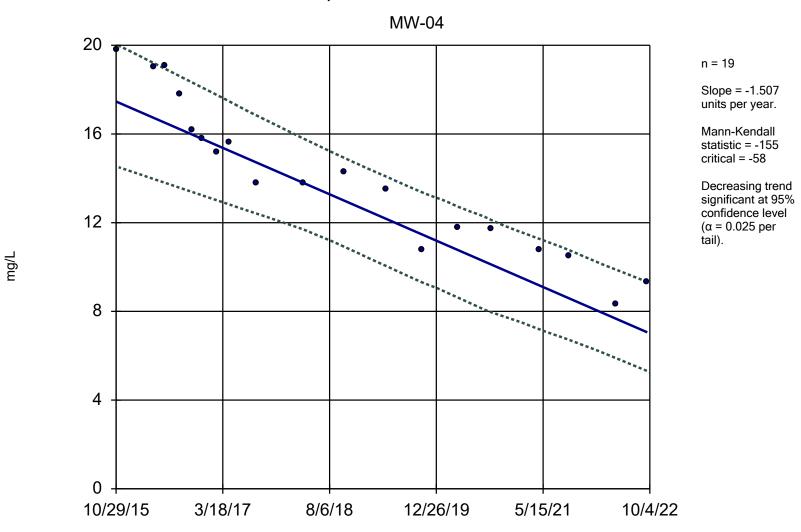
Constituent: Sulfate Analysis Run 11/11/2022 1:05 PM View: Landfill AppIII



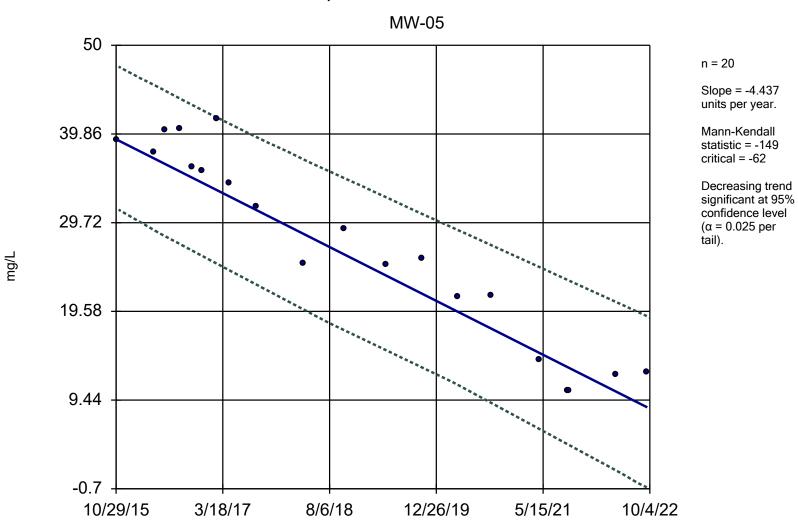
Constituent: Total Dissolved Solids [TDS] Analysis Run 11/11/2022 1:05 PM View: Landfill AppIII RD Morrow Generating Facility Client: Cooperative Energy Data: RD Morrow Gen


Trend Test

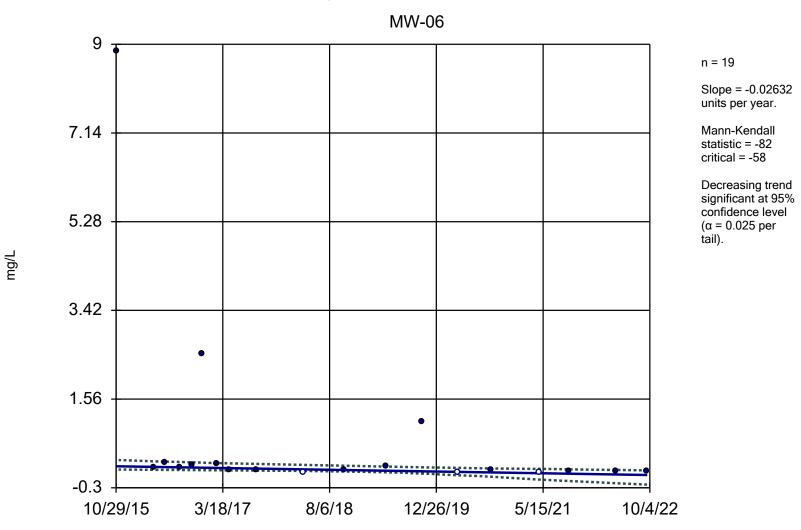
		RD Morrow Generati	ng Facility	Client: Cooperation	ve Energy	Data: RD	Morrow Gen	Printed 11/1	1/2022, 1:15 PM		
Constituent	<u>Well</u>	Slope	Calc.	Critical	Sig.	<u>N</u>	%NDs	Normality	<u>Xform</u>	<u>Alpha</u>	Method
Boron (mg/L)	MW-02 (bg)	-0.1325	-134	-58	Yes	19	0	n/a	n/a	0.05	NP
Boron (mg/L)	MW-03	-0.6034	-139	-58	Yes	19	0	n/a	n/a	0.05	NP
Boron (mg/L)	MW-04	-1.507	-155	-58	Yes	19	0	n/a	n/a	0.05	NP
Boron (mg/L)	MW-05	-4.437	-149	-62	Yes	20	0	n/a	n/a	0.05	NP
Boron (mg/L)	MW-06	-0.02632	-82	-58	Yes	19	15.79	n/a	n/a	0.05	NP
Calcium (mg/L)	MW-02 (bg)	-8.066	-97	-66	Yes	21	0	n/a	n/a	0.05	NP
Calcium (mg/L)	MW-03	-0.06222	-1	-66	No	21	0	n/a	n/a	0.05	NP
Calcium (mg/L)	MW-04	-1.389	-12	-66	No	21	0	n/a	n/a	0.05	NP
Calcium (mg/L)	MW-05	0.9101	17	66	No	21	0	n/a	n/a	0.05	NP
Calcium (mg/L)	MW-06	0.03303	20	66	No	21	0	n/a	n/a	0.05	NP
Chloride (mg/L)	MW-02 (bg)	-15.45	-124	-58	Yes	19	0	n/a	n/a	0.05	NP
Chloride (mg/L)	MW-03	-33.09	-149	-58	Yes	19	0	n/a	n/a	0.05	NP
Chloride (mg/L)	MW-04	-31.74	-132	-58	Yes	19	0	n/a	n/a	0.05	NP
Chloride (mg/L)	MW-05	-80.57	-138	-58	Yes	19	0	n/a	n/a	0.05	NP
Chloride (mg/L)	MW-06	-0.6513	-76	-58	Yes	19	0	n/a	n/a	0.05	NP
Fluoride (mg/L)	MW-02 (bg)	0.03329	67	81	No	24	4.167	n/a	n/a	0.05	NP
Fluoride (mg/L)	MW-03	-0.1211	-146	-81	Yes	24	50	n/a	n/a	0.05	NP
Fluoride (mg/L)	MW-04	-0.1134	-133	-81	Yes	24	41.67	n/a	n/a	0.05	NP
Fluoride (mg/L)	MW-05	-0.1962	-162	-81	Yes	24	50	n/a	n/a	0.05	NP
Fluoride (mg/L)	MW-06	0.02792	182	81	Yes	24	95.83	n/a	n/a	0.05	NP
pH (SU)	MW-02 (bg)	-0.00	-0.7432	-1.96	No	47	0	n/a	n/a	0.05	NP
pH (SU)	MW-03	0.08487	5.633	1.96	Yes	47	0	n/a	n/a	0.05	NP
pH (SU)	MW-04	0.04092	3.592	1.96	Yes	48	0	n/a	n/a	0.05	NP
pH (SU)	MW-05	0.1601	6.046	1.96	Yes	48	0	n/a	n/a	0.05	NP
pH (SU)	MW-06	-0.01609	-1.796	-1.96	No	48	0	n/a	n/a	0.05	NP
Sulfate (mg/L)	MW-02 (bg)	-2.086	-0.5756	-1.96	No	43	0	n/a	n/a	0.05	NP
Sulfate (mg/L)	MW-03	-57.72	-4.219	-1.96	Yes	43	0	n/a	n/a	0.05	NP
Sulfate (mg/L)	MW-04	-49.19	-1.649	-1.96	No	44	0	n/a	n/a	0.05	NP
Sulfate (mg/L)	MW-05	-133.9	-3.004	-1.96	Yes	44	0	n/a	n/a	0.05	NP
Sulfate (mg/L)	MW-06	0.8232	5.325	1.96	Yes	44	13.64	n/a	n/a	0.05	NP
Total Dissolved S	MW-02 (bg)	-6.251	-51	-158	No	38	0	n/a	n/a	0.05	NP
Total Dissolved S	MW-03	-109.2	-473	-158	Yes	38	0	n/a	n/a	0.05	NP
Total Dissolved S	MW-04	-154.6	-342	-164	Yes	39	0	n/a	n/a	0.05	NP
Total Dissolved S	MW-05	-277	-419	-164	Yes	39	0	n/a	n/a	0.05	NP
Total Dissolved S	MW-06	2.999	268	164	Yes	39	0	n/a	n/a	0.05	NP


Sen's Slope and 95% Confidence Band

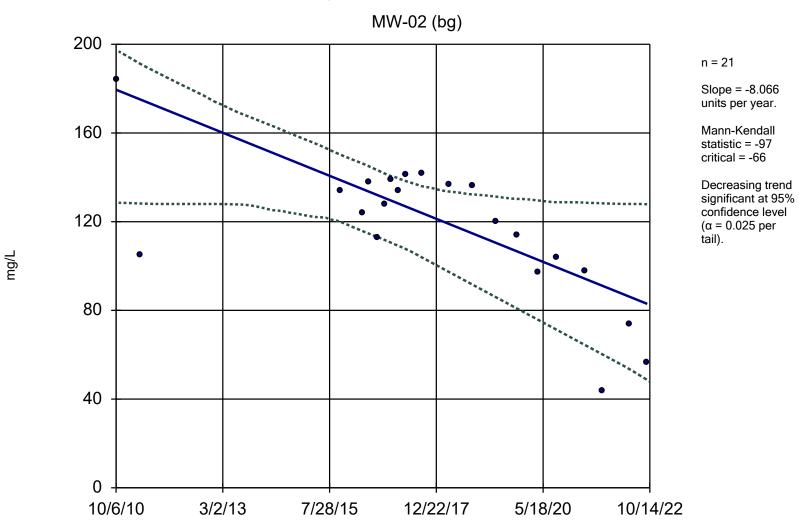
Constituent: Boron Analysis Run 11/11/2022 1:13 PM View: Landfill ApplII



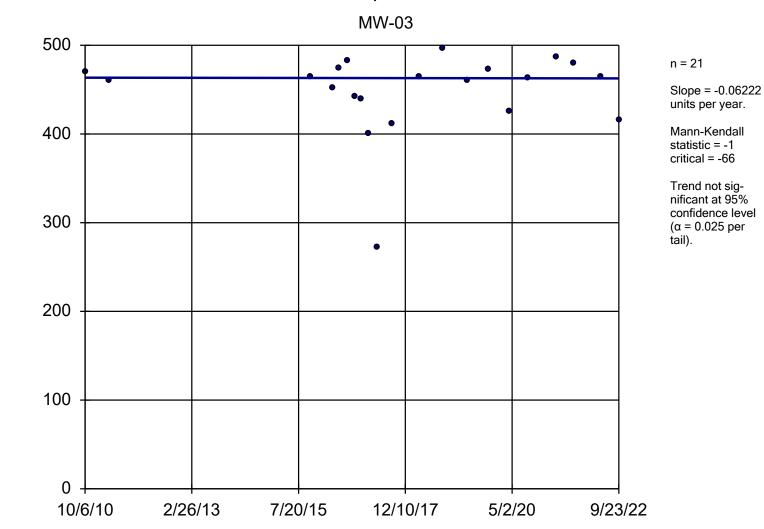
Constituent: Boron Analysis Run 11/11/2022 1:13 PM View: Landfill ApplII



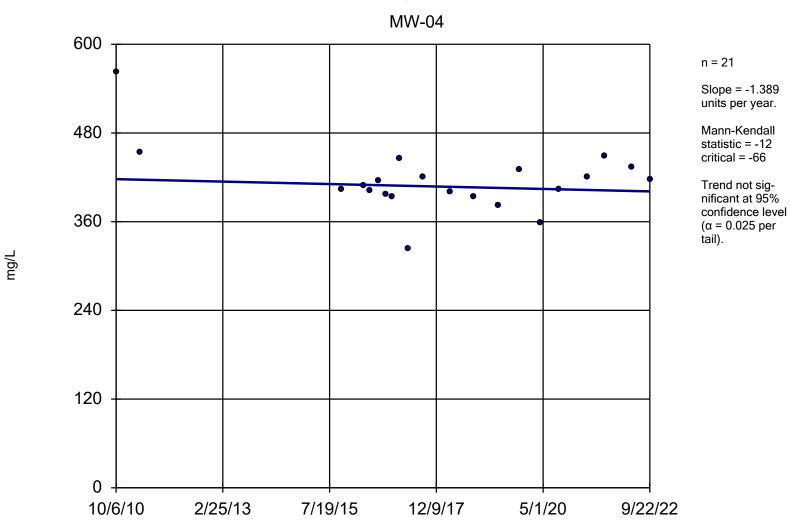
Constituent: Boron Analysis Run 11/11/2022 1:14 PM View: Landfill AppIII


RD Morrow Generating Facility
Client: Cooperative Energy
Data: RD Morrow Gen

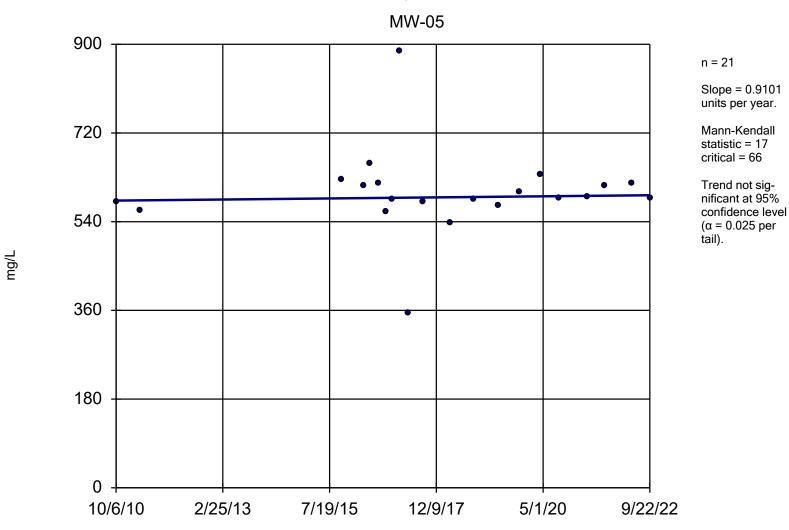
Constituent: Boron Analysis Run 11/11/2022 1:14 PM View: Landfill AppIII RD Morrow Generating Facility Client: Cooperative Energy Data: RD Morrow Gen


Constituent: Boron Analysis Run 11/11/2022 1:14 PM View: Landfill ApplII

Constituent: Calcium Analysis Run 11/11/2022 1:14 PM View: Landfill ApplII

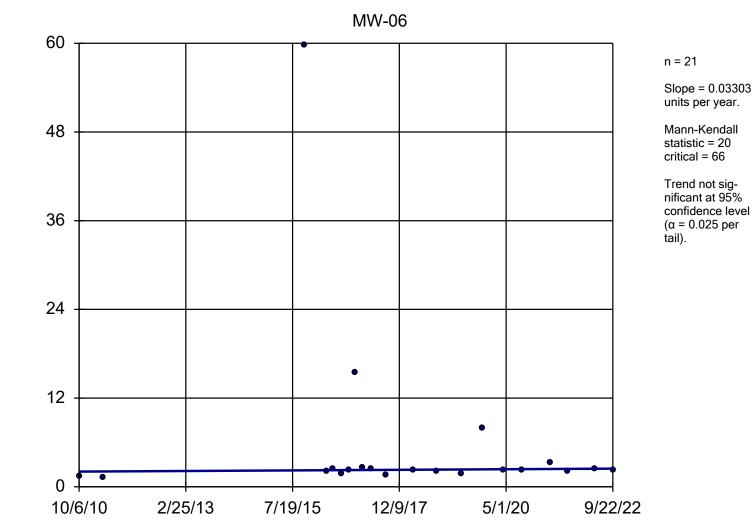

mg/L

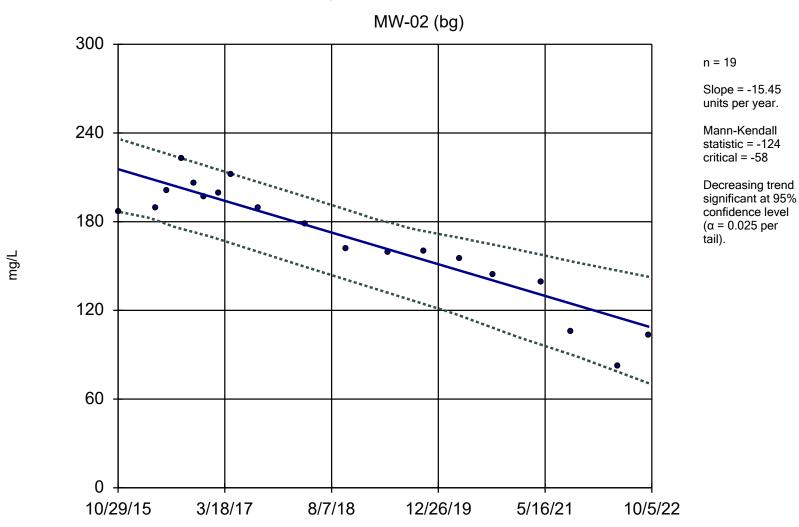
Sen's Slope Estimator


Constituent: Calcium Analysis Run 11/11/2022 1:14 PM View: Landfill ApplII

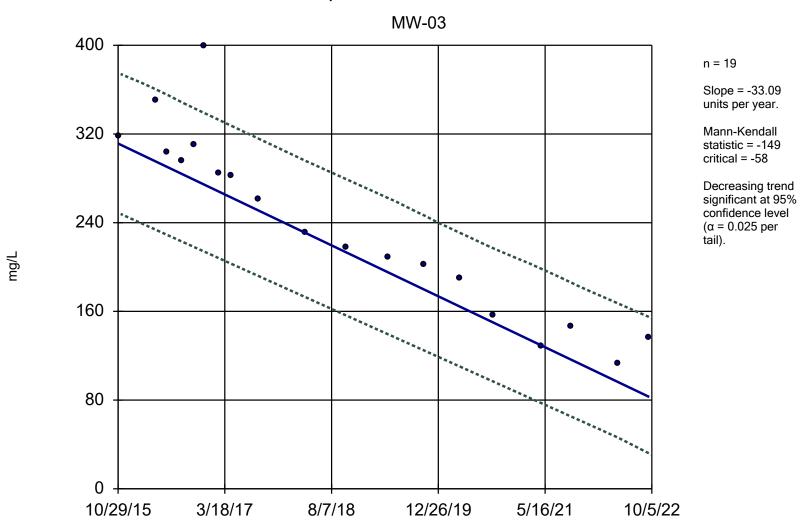
Sen's Slope Estimator

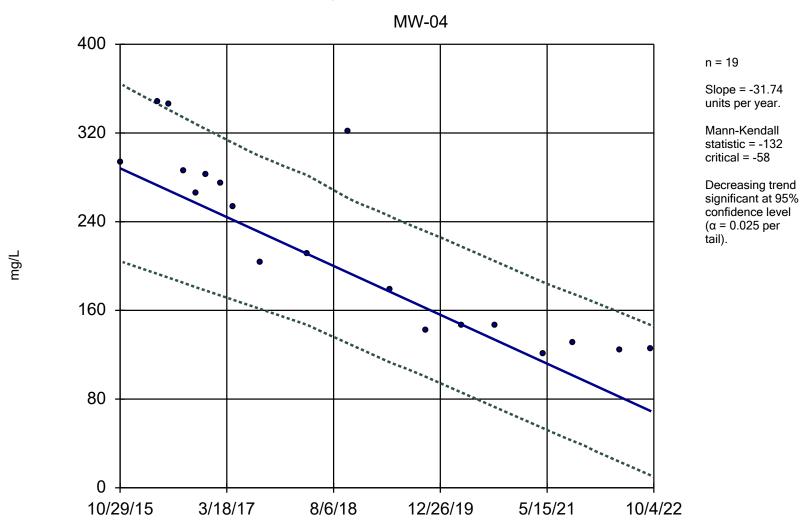
Constituent: Calcium Analysis Run 11/11/2022 1:14 PM View: Landfill ApplII

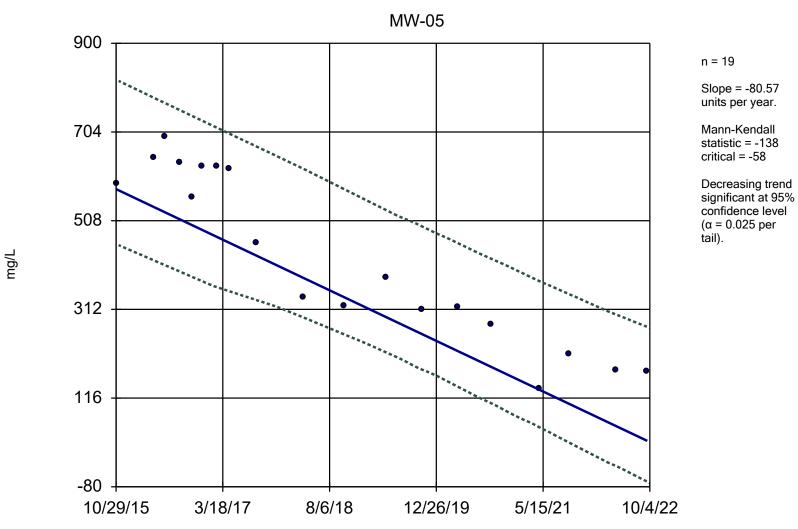

Sen's Slope Estimator

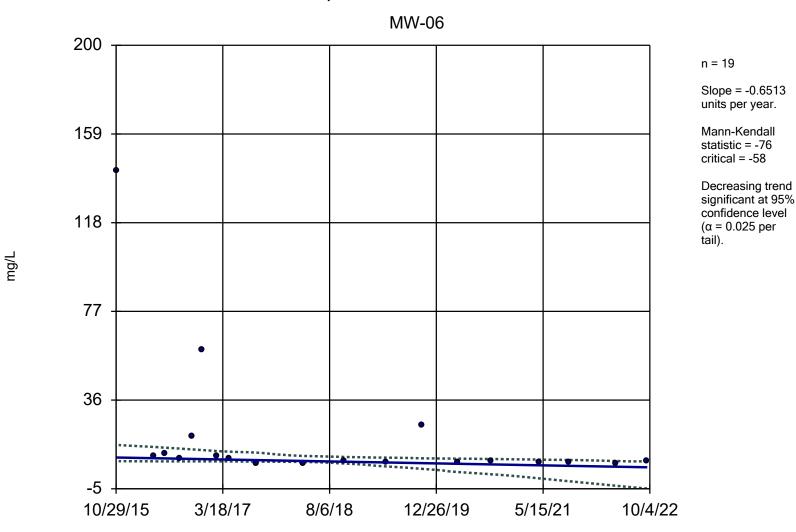

Constituent: Calcium Analysis Run 11/11/2022 1:14 PM View: Landfill AppIII

mg/L

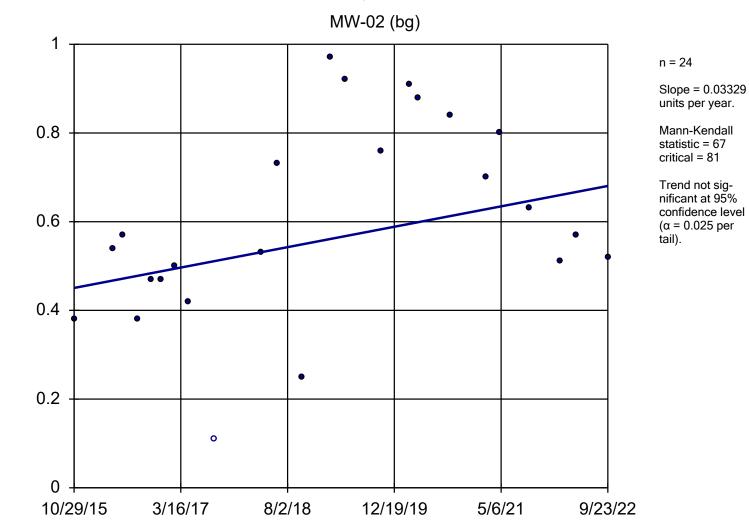

Sen's Slope Estimator

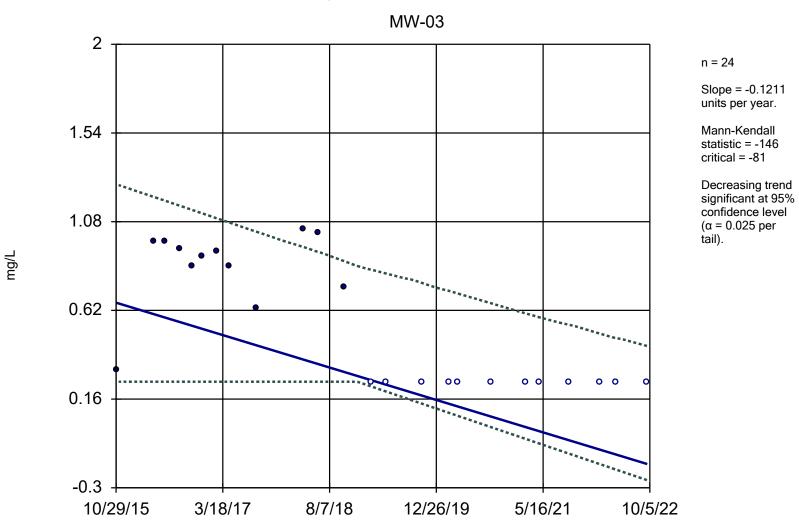

Constituent: Calcium Analysis Run 11/11/2022 1:14 PM View: Landfill AppIII


Constituent: Chloride Analysis Run 11/11/2022 1:14 PM View: Landfill AppIII


Constituent: Chloride Analysis Run 11/11/2022 1:14 PM View: Landfill AppIII

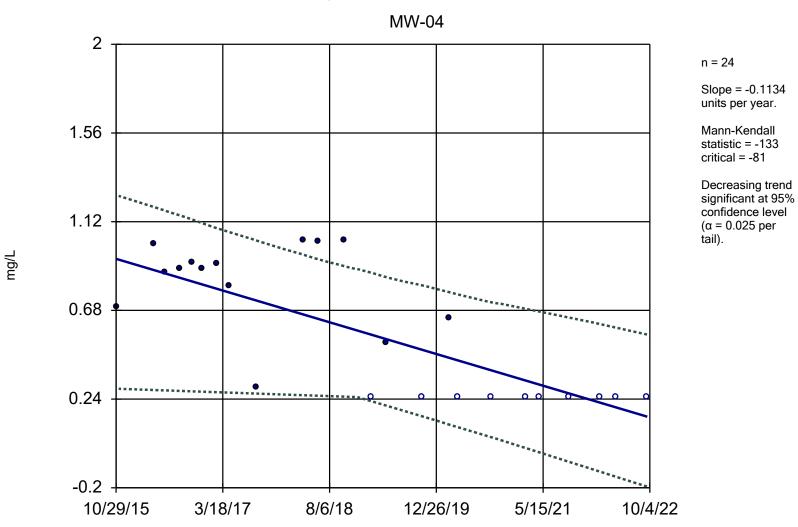
Constituent: Chloride Analysis Run 11/11/2022 1:14 PM View: Landfill ApplII


Constituent: Chloride Analysis Run 11/11/2022 1:14 PM View: Landfill AppIII

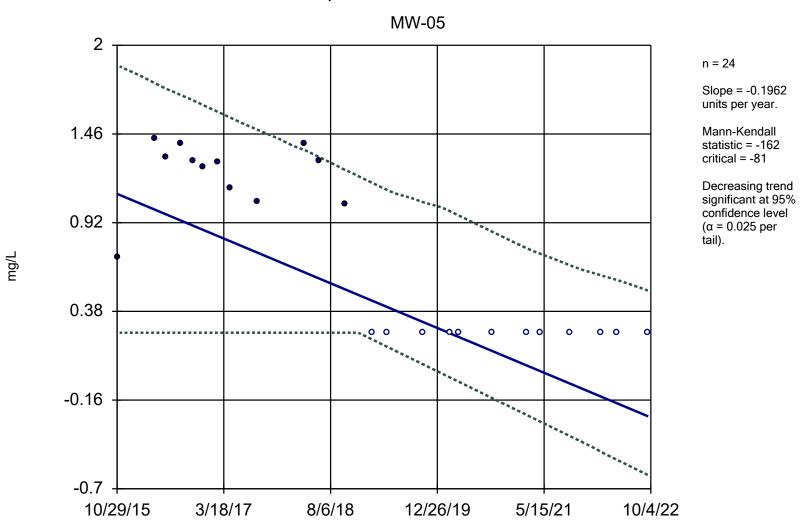

Constituent: Chloride Analysis Run 11/11/2022 1:14 PM View: Landfill AppIII

mg/L

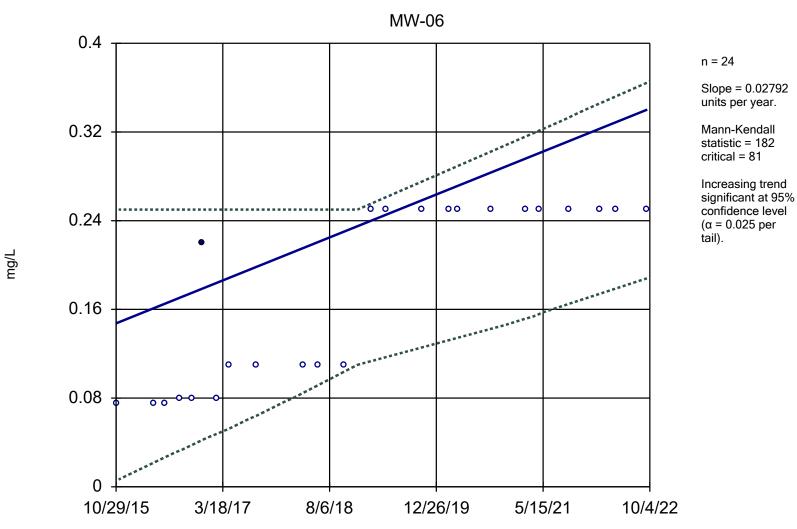
Sen's Slope Estimator



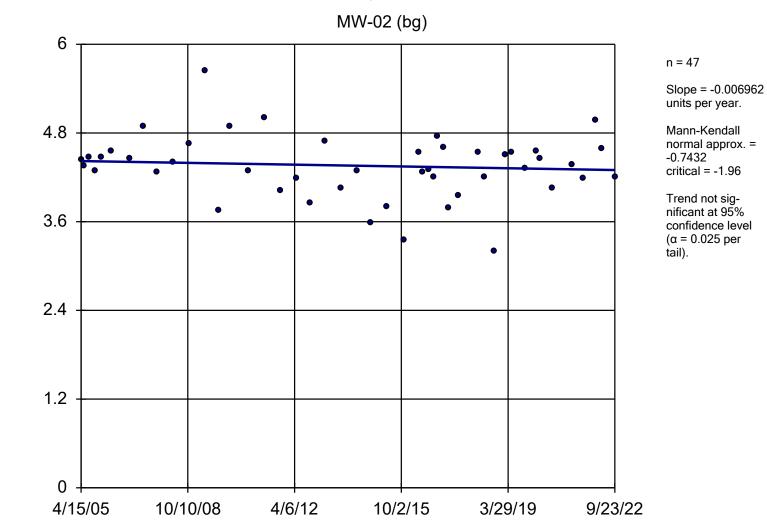
Constituent: Fluoride Analysis Run 11/11/2022 1:14 PM View: Landfill AppIII

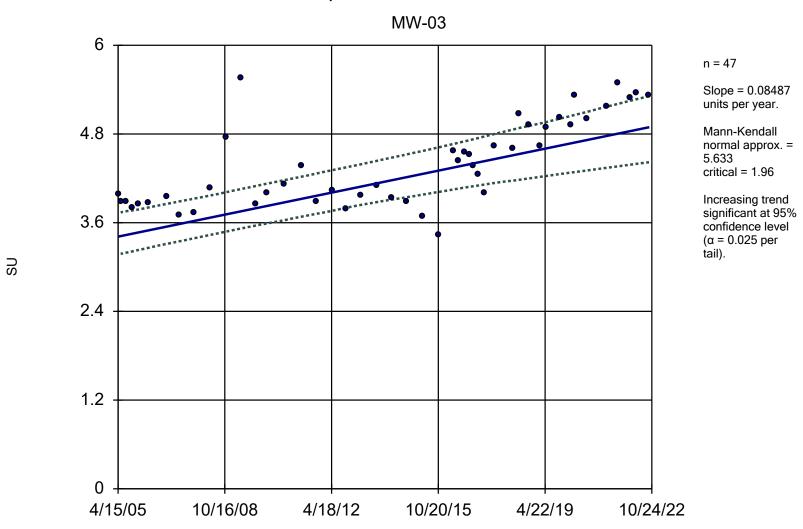


Constituent: Fluoride Analysis Run 11/11/2022 1:14 PM View: Landfill AppIII

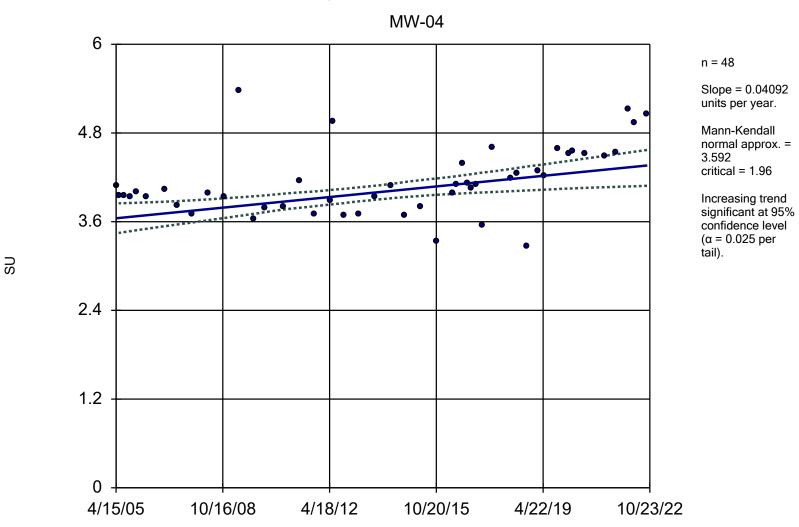

RD Morrow Generating Facility Client: Cooperative Energy Data: RD Morrow Gen

Constituent: Fluoride Analysis Run 11/11/2022 1:14 PM View: Landfill ApplII

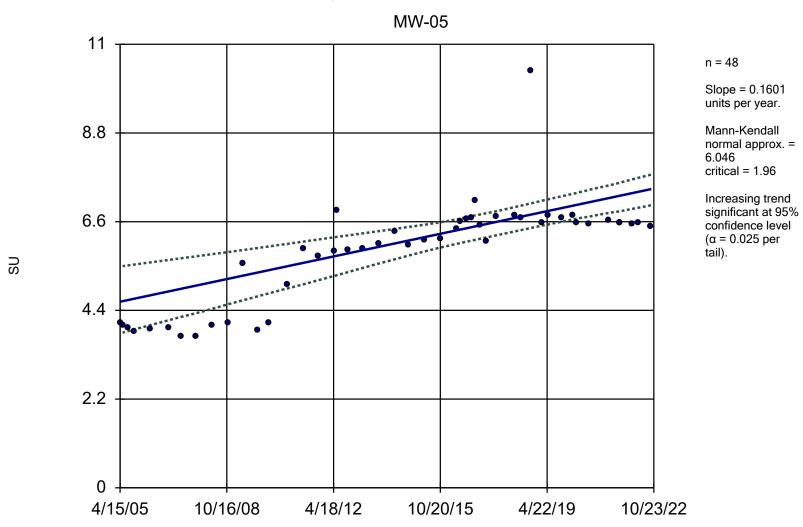

Constituent: Fluoride Analysis Run 11/11/2022 1:14 PM View: Landfill AppIII


Constituent: Fluoride Analysis Run 11/11/2022 1:14 PM View: Landfill AppIII

SU

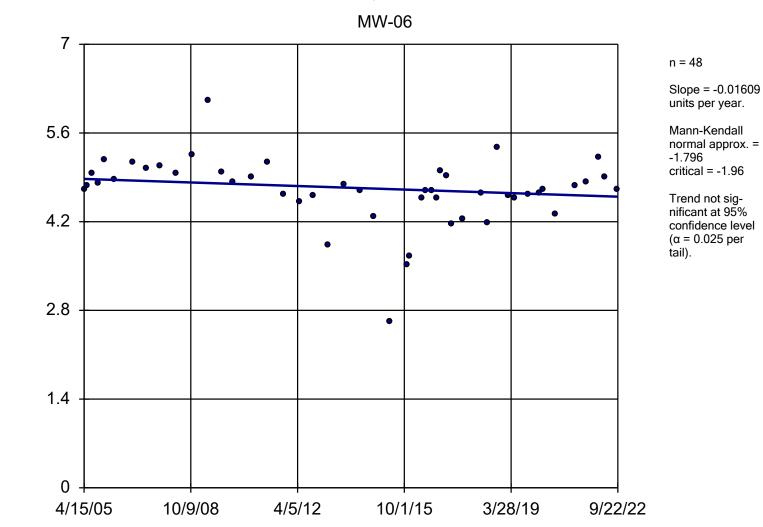

Sen's Slope Estimator

Constituent: pH Analysis Run 11/11/2022 1:14 PM View: Landfill AppIII RD Morrow Generating Facility Client: Cooperative Energy Data: RD Morrow Gen

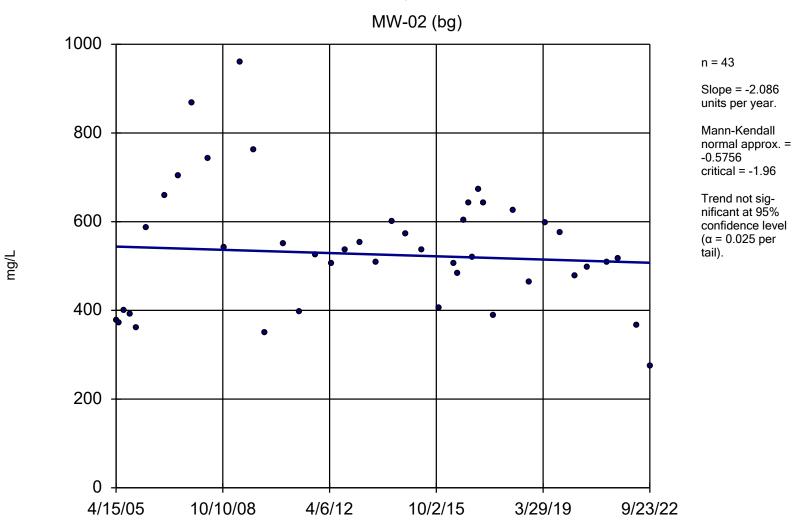


Constituent: pH Analysis Run 11/11/2022 1:14 PM View: Landfill AppIII RD Morrow Generating Facility Client: Cooperative Energy Data: RD Morrow Gen

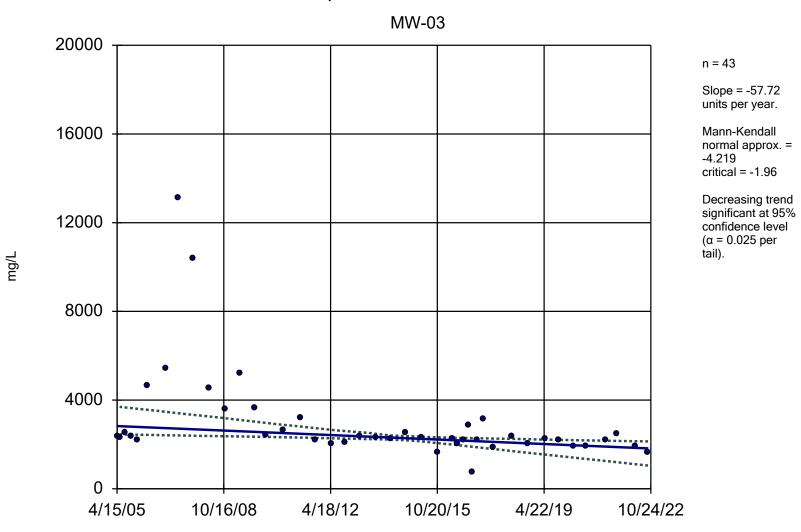
Constituent: pH Analysis Run 11/11/2022 1:14 PM View: Landfill AppIII


RD Morrow Generating Facility Client: Cooperative Energy Data: RD Morrow Gen

Constituent: pH Analysis Run 11/11/2022 1:14 PM View: Landfill AppIII RD Morrow Generating Facility Client: Cooperative Energy Data: RD Morrow Gen

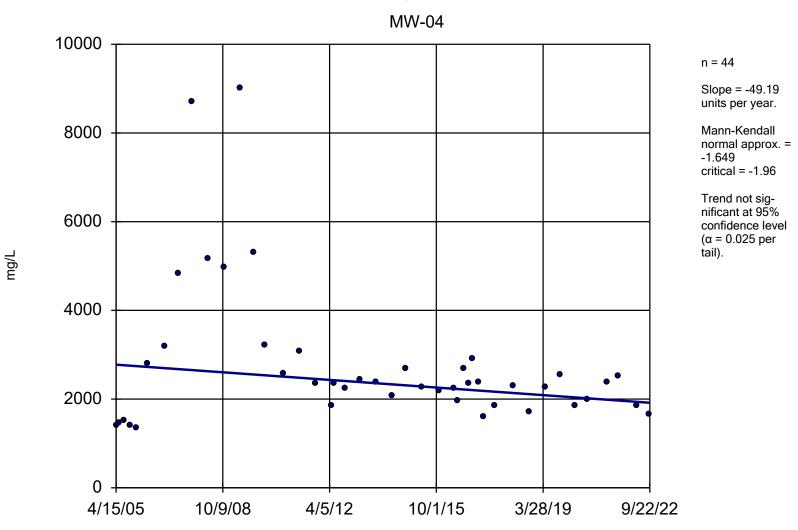

SU

Sen's Slope Estimator

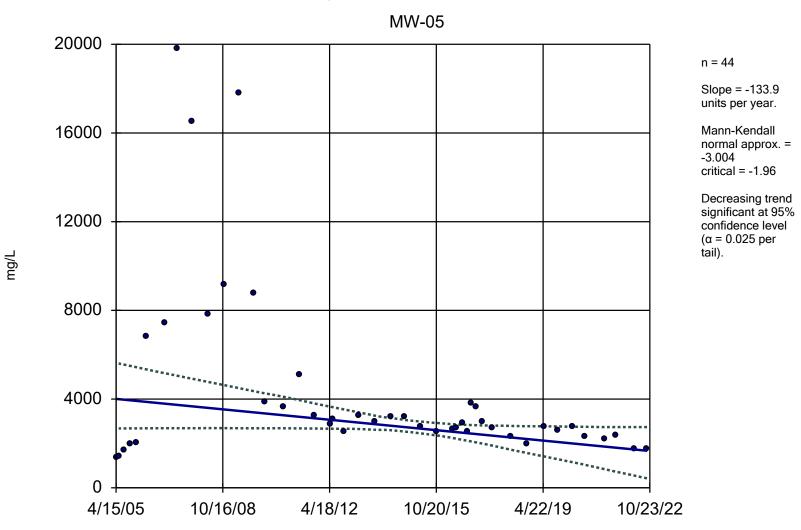


Constituent: pH Analysis Run 11/11/2022 1:14 PM View: Landfill AppIII RD Morrow Generating Facility Client: Cooperative Energy Data: RD Morrow Gen

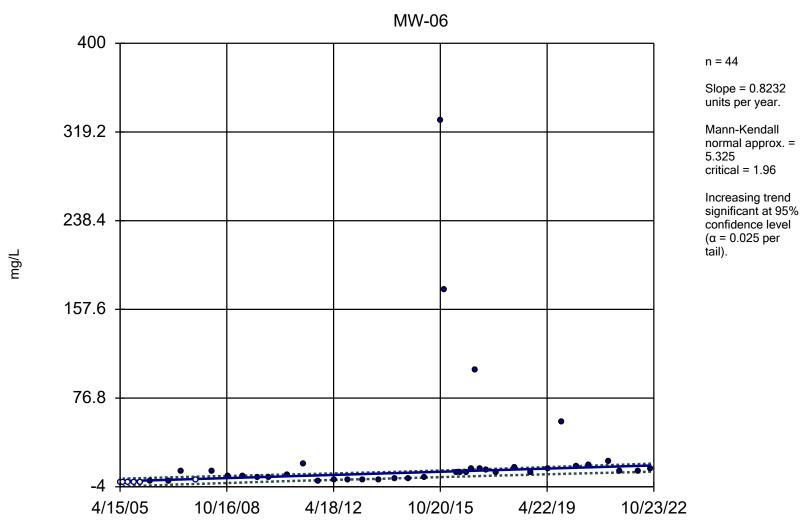
Sen's Slope Estimator



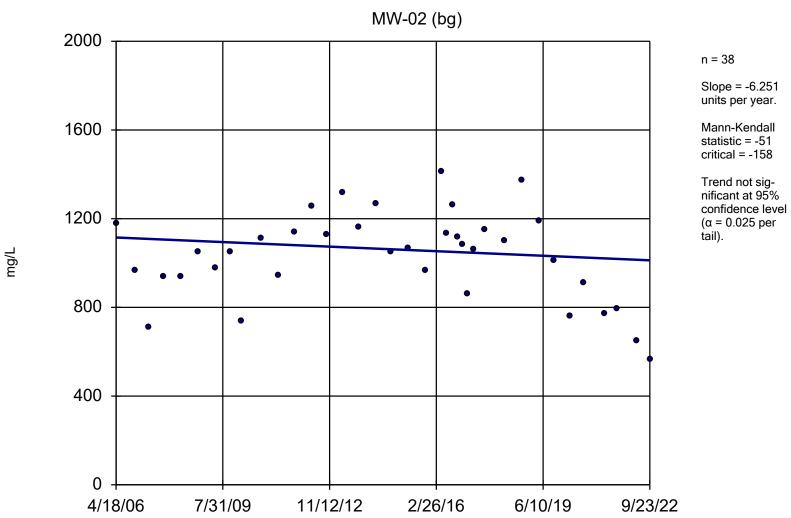
Constituent: Sulfate Analysis Run 11/11/2022 1:14 PM View: Landfill AppIII



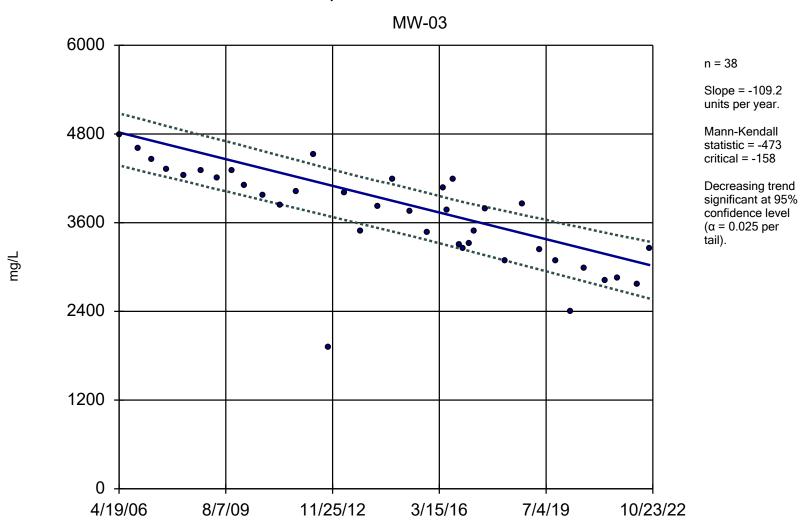
Constituent: Sulfate Analysis Run 11/11/2022 1:14 PM View: Landfill AppIII


Sen's Slope Estimator

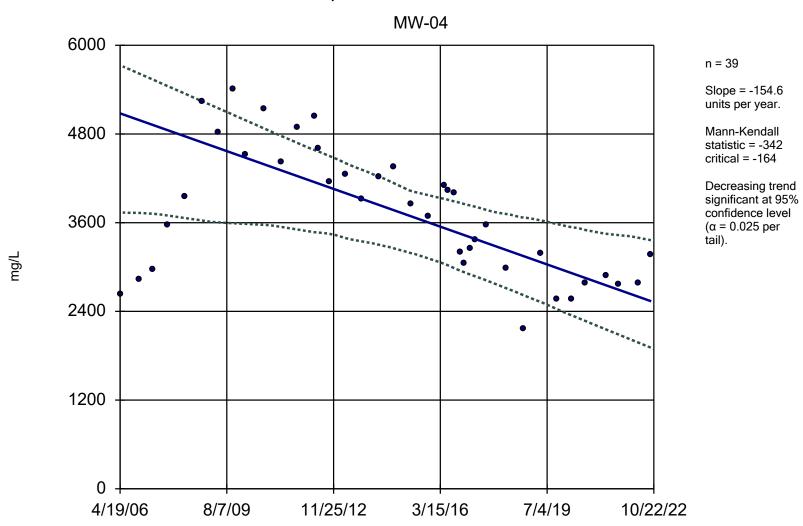
Constituent: Sulfate Analysis Run 11/11/2022 1:14 PM View: Landfill AppIII

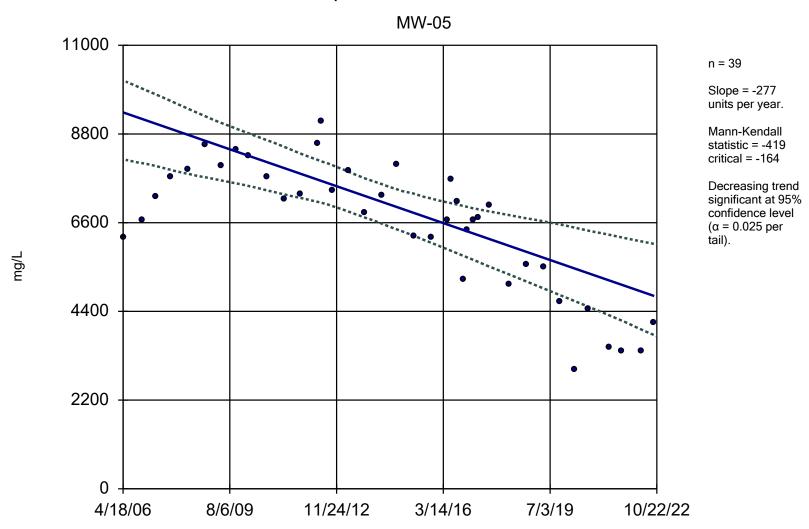


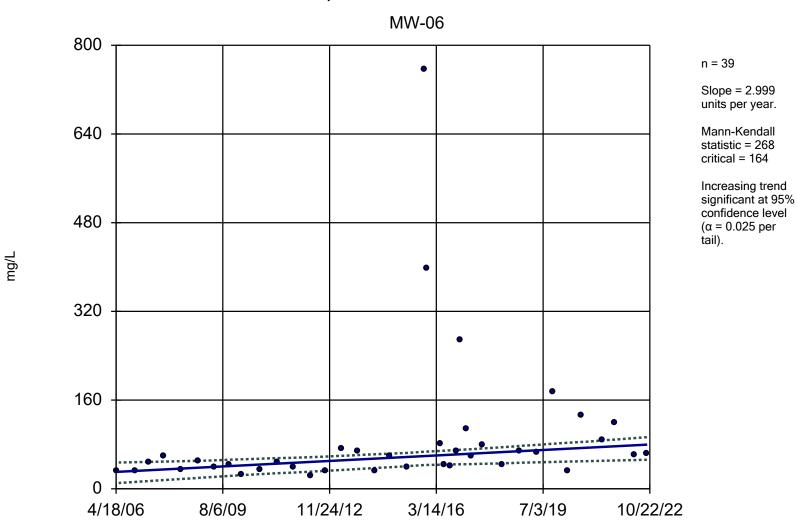
Constituent: Sulfate Analysis Run 11/11/2022 1:14 PM View: Landfill AppIII



Constituent: Sulfate Analysis Run 11/11/2022 1:14 PM View: Landfill AppIII

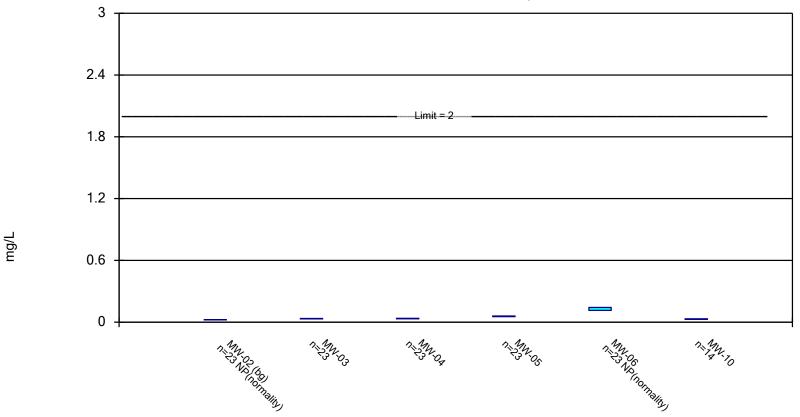

Sen's Slope Estimator


Constituent: Total Dissolved Solids [TDS] Analysis Run 11/11/2022 1:14 PM View: Landfill AppIII RD Morrow Generating Facility Client: Cooperative Energy Data: RD Morrow Gen


Constituent: Total Dissolved Solids [TDS] Analysis Run 11/11/2022 1:14 PM View: Landfill AppIII RD Morrow Generating Facility Client: Cooperative Energy Data: RD Morrow Gen

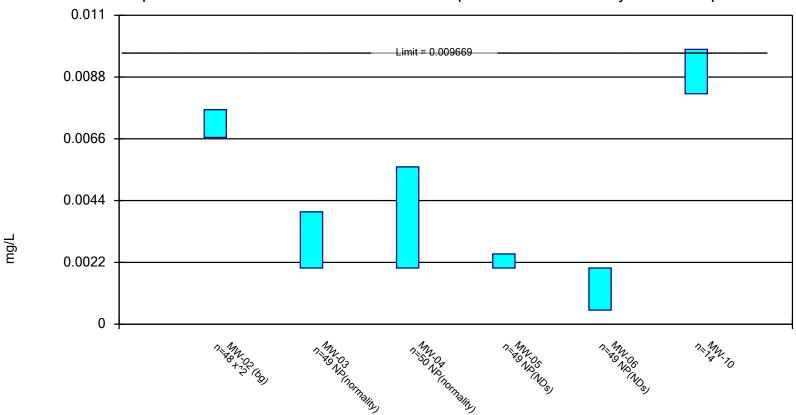
Constituent: Total Dissolved Solids [TDS] Analysis Run 11/11/2022 1:14 PM View: Landfill AppIII RD Morrow Generating Facility Client: Cooperative Energy Data: RD Morrow Gen

Constituent: Total Dissolved Solids [TDS] Analysis Run 11/11/2022 1:14 PM View: Landfill AppIII RD Morrow Generating Facility Client: Cooperative Energy Data: RD Morrow Gen

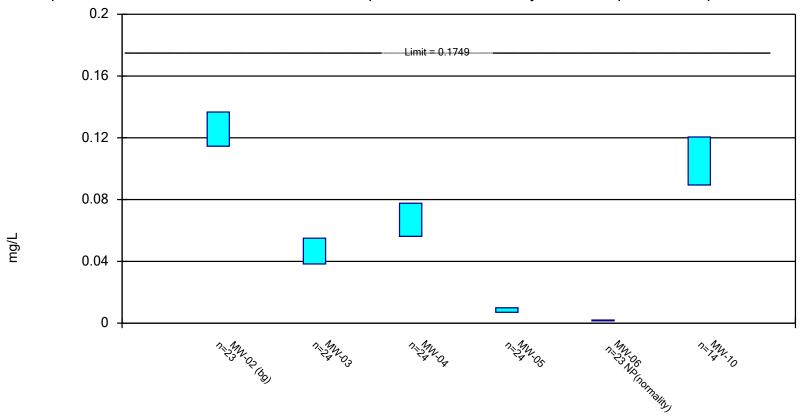

Constituent: Total Dissolved Solids [TDS] Analysis Run 11/11/2022 1:14 PM View: Landfill AppIII RD Morrow Generating Facility Client: Cooperative Energy Data: RD Morrow Gen

Confidence Interval

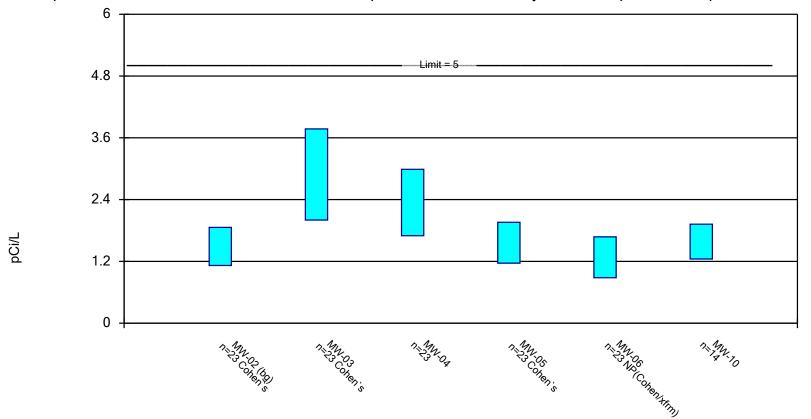
	RD Mo	rrow Generating Fac	cility Client: Coo	perative Energy	Data	: RD Morr	ow Gen	Printed 11/11/2022, 1:2	9 PM	
Constituent	Well	Upper Lim.	Lower Lim.	Compliance	Sig.	<u>N</u>	%NDs	<u>Transform</u>	<u>Alpha</u>	Method
Barium (mg/L)	MW-02 (bg)	0.0234	0.022	2	No	23	0	No	0.01	NP (normality)
Barium (mg/L)	MW-03	0.03558	0.03175	2	No	23	0	No	0.01	Param.
Barium (mg/L)	MW-04	0.03728	0.03234	2	No	23	0	No	0.01	Param.
Barium (mg/L)	MW-05	0.05965	0.05307	2	No	23	0	No	0.01	Param.
Barium (mg/L)	MW-06	0.143	0.114	2	No	23	0	No	0.01	NP (normality)
Barium (mg/L)	MW-10	0.0321	0.0267	2	No	14	0	No	0.01	Param.
Beryllium (mg/L)	MW-02 (bg)	0.007638	0.006649	0.009669	No	48	4.167	x^2	0.01	Param.
Beryllium (mg/L)	MW-03	0.004	0.002	0.009669	No	49	51.02	No	0.01	NP (normality)
Beryllium (mg/L)	MW-04	0.0056	0.002	0.009669	No	50	44	No	0.01	NP (normality)
Beryllium (mg/L)	MW-05	0.0025	0.002	0.009669	No	49	75.51	No	0.01	NP (NDs)
Beryllium (mg/L)	MW-06	0.002	0.0005	0.009669	No	49	100	No	0.01	NP (NDs)
Beryllium (mg/L)	MW-10	0.009785	0.008205	0.009669	No	14	0	No	0.01	Param.
Cobalt (mg/L)	MW-02 (bg)	0.1367	0.1146	0.1749	No	23	0	No	0.01	Param.
Cobalt (mg/L)	MW-03	0.055	0.03834	0.1749	No	24	0	No	0.01	Param.
Cobalt (mg/L)	MW-04	0.07765	0.05621	0.1749	No	24	0	No	0.01	Param.
Cobalt (mg/L)	MW-05	0.009942	0.00703	0.1749	No	24	0	No	0.01	Param.
Cobalt (mg/L)	MW-06	0.00203	0.00148	0.1749	No	23	0	No	0.01	NP (normality)
Cobalt (mg/L)	MW-10	0.1205	0.08946	0.1749	No	14	0	No	0.01	Param.
Combined Radium (pCi/L)	MW-02 (bg)	1.86	1.121	5	No	23	30.43	No	0.01	Param.
Combined Radium (pCi/L)	MW-03	3.773	2.003	5	No	23	17.39	No	0.01	Param.
Combined Radium (pCi/L)	MW-04	2.988	1.698	5	No	23	13.04	No	0.01	Param.
Combined Radium (pCi/L)	MW-05	1.959	1.165	5	No	23	30.43	No	0.01	Param.
Combined Radium (pCi/L)	MW-06	1.677	0.882	5	No	23	17.39	No	0.01	NP (Cohens/xfrm)
Combined Radium (pCi/L)	MW-10	1.921	1.245	5	No	14	14.29	No	0.01	Param.
Fluoride (mg/L)	MW-02 (bg)	0.7112	0.4855	4	No	24	4.167	No	0.01	Param.
Fluoride (mg/L)	MW-03	0.93	0.25	4	No	24	50	No	0.01	NP (normality)
Fluoride (mg/L)	MW-04	0.91	0.25	4	No	24	41.67	No	0.01	NP (normality)
Fluoride (mg/L)	MW-05	1.29	0.25	4	No	24	50	No	0.01	NP (normality)
Fluoride (mg/L)	MW-06	0.25	0.08	4	No	24	95.83	No	0.01	NP (NDs)
Fluoride (mg/L)	MW-10	0.6624	0.519	4	No	14	7.143	x^2	0.01	Param.
Lead (mg/L)	MW-02 (bg)	0.004462	0.00291	0.015	No	48	8.333	sqrt(x)	0.01	Param.
Lead (mg/L)	MW-03	0.0167	0.008621	0.015	No	49	6.122	sqrt(x)	0.01	Param.
Lead (mg/L)	MW-04	0.01266	0.006476	0.015	No	50	10	sqrt(x)	0.01	Param.
Lead (mg/L)	MW-05	0.00207	0.0005	0.015	No	50	68	No	0.01	NP (normality)
Lead (mg/L)	MW-06	0.0005	0.0005	0.015	No	49	91.84	No	0.01	NP (NDs)
Lead (mg/L)	MW-10	0.003456	0.002747	0.015	No	14	0	No	0.01	Param.
Lithium (mg/L)	MW-02 (bg)	0.025	0.02	1.42	No	23	91.3	No	0.01	NP (NDs)
Lithium (mg/L)	MW-03	0.7198	0.4927	1.42	No	23	0	No	0.01	Param.
Lithium (mg/L)	MW-04	0.8481	0.4764	1.42	No	23	4.348	No	0.01	Param.
Lithium (mg/L)	MW-05	6.462	3.912	1.42	Yes	23	0	No	0.01	Param.
Lithium (mg/L)	MW-06	0.025	0.02	1.42	No	23	100	No	0.01	NP (NDs)
Lithium (mg/L)	MW-10	0.465	0.3289	1.42	No	14	0	No	0.01	Param.
Molybdenum (mg/L)	MW-02 (bg)	0.0025	0.0005	0.1	No	23	100	No	0.01	NP (NDs)
Molybdenum (mg/L)	MW-03	0.00727	0.0005	0.1	No	24	95.83	No	0.01	NP (NDs)
Molybdenum (mg/L)	MW-04	0.006	0.0005	0.1	No	24	91.67	No	0.01	NP (NDs)
Molybdenum (mg/L)	MW-05	6.59	4.525	0.1	Yes	25	0	No	0.01	Param.
Molybdenum (mg/L)	MW-06	0.005	0.0005	0.1	No	23	91.3	No	0.01	NP (NDs)
Molybdenum (mg/L)	MW-10	0.0025	0.0005	0.1	No	14	100	No	0.01	NP (NDs)


Parametric and Non-Parametric (NP) Confidence Interval

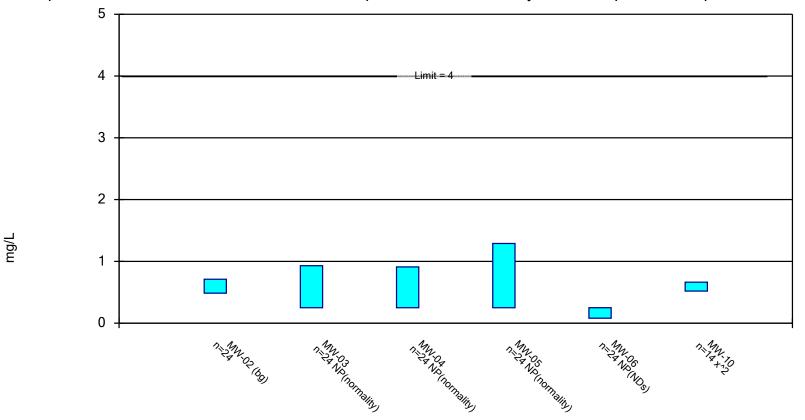
Compliance Limit is not exceeded. Per-well alpha = 0.01. Normality Test: Shapiro Wilk, alpha based on n.


Constituent: Barium Analysis Run 11/11/2022 1:28 PM View: Landfill App IV RD Morrow Generating Facility Client: Cooperative Energy Data: RD Morrow Gen

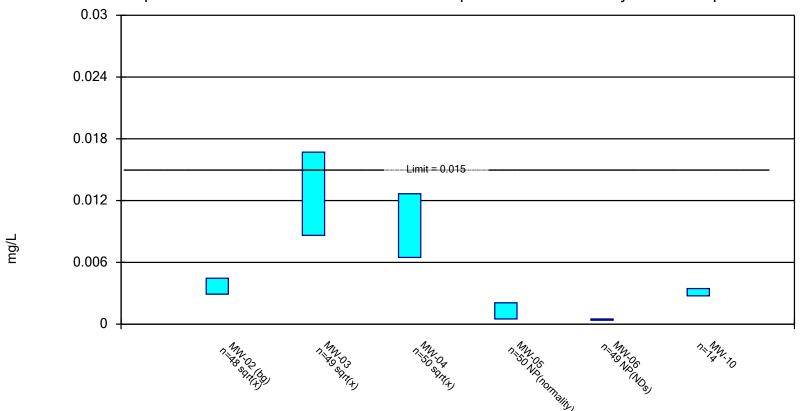
Compliance Limit is not exceeded. Per-well alpha = 0.01. Normality Test: multiple



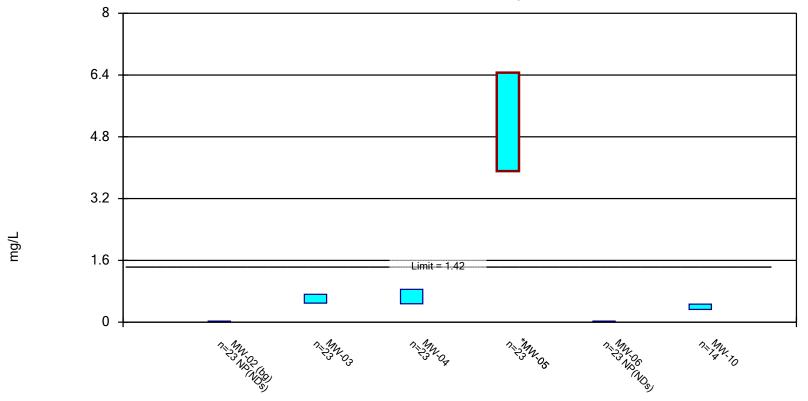
Constituent: Beryllium Analysis Run 11/11/2022 1:28 PM View: Landfill App IV


Compliance Limit is not exceeded. Per-well alpha = 0.01. Normality Test: Shapiro Wilk, alpha based on n.

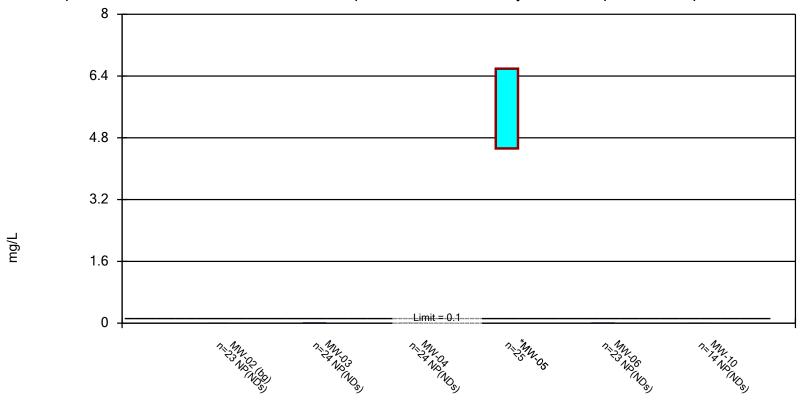
Compliance Limit is not exceeded. Per-well alpha = 0.01. Normality Test: Shapiro Wilk, alpha based on n.

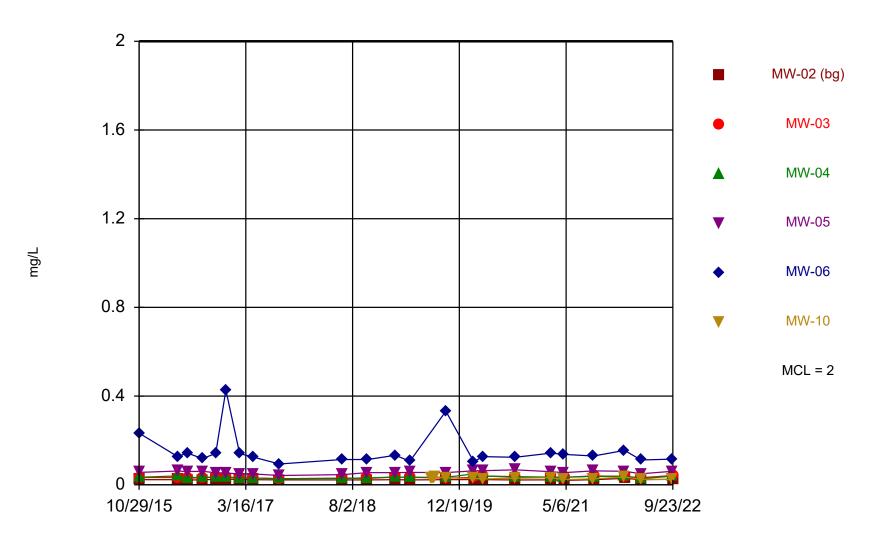


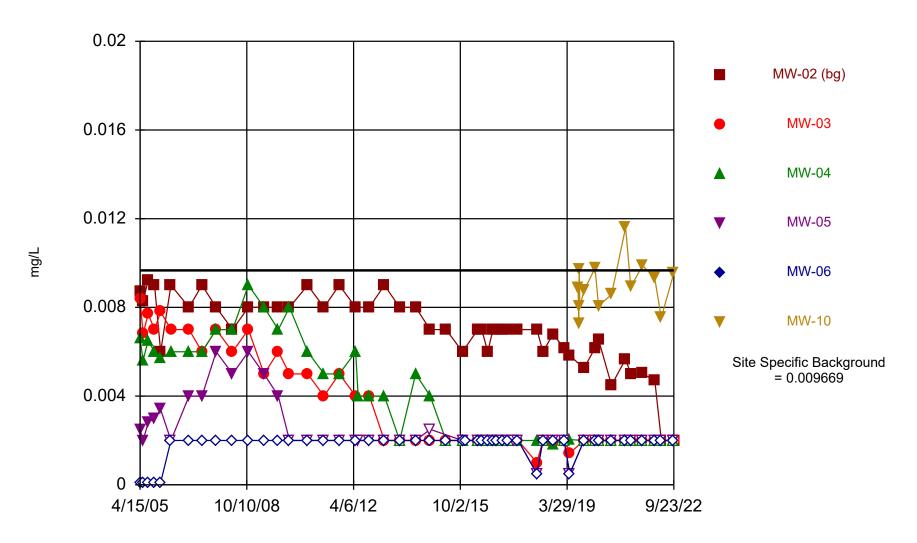
Compliance Limit is not exceeded. Per-well alpha = 0.01. Normality Test: Shapiro Wilk, alpha based on n.

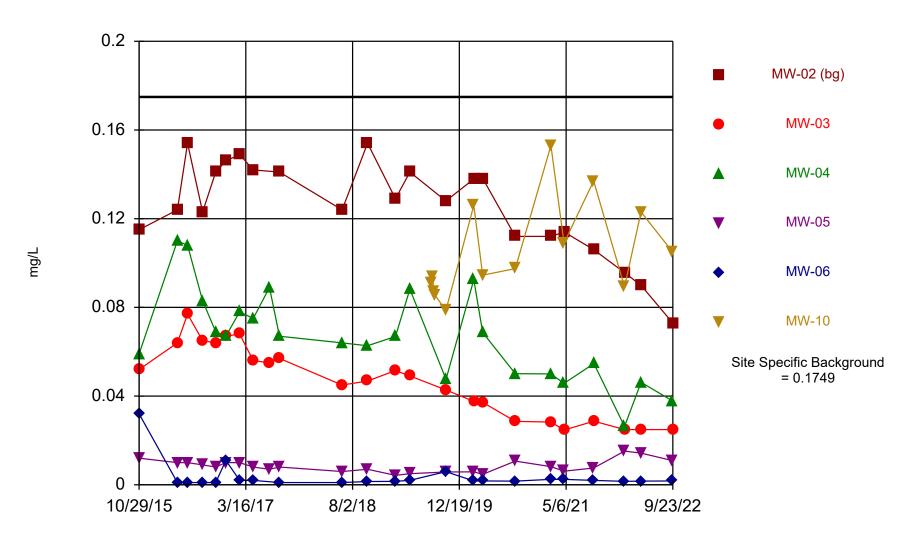


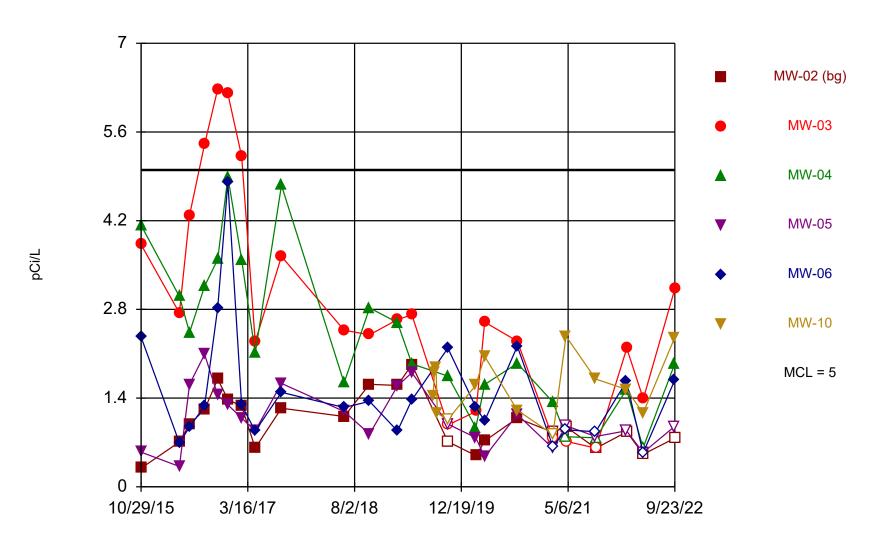
Constituent: Fluoride Analysis Run 11/11/2022 1:28 PM View: Landfill App IV

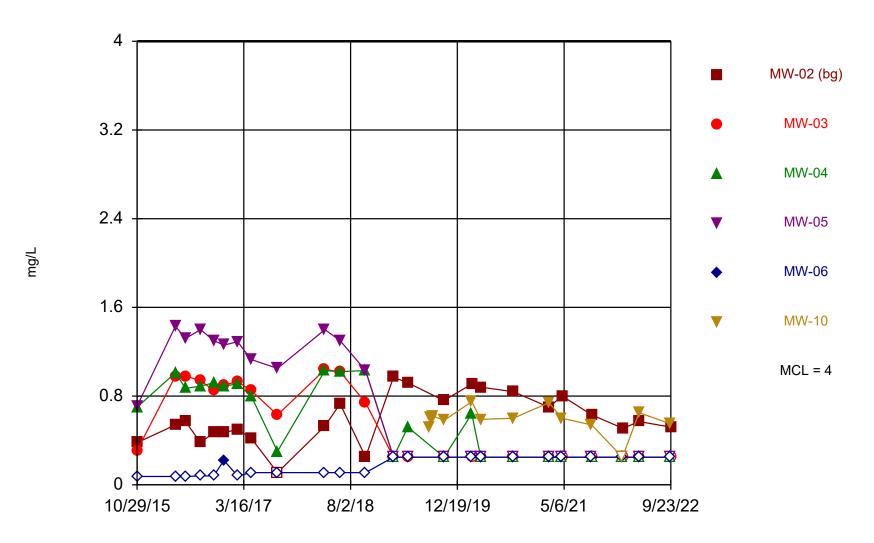

Compliance Limit is not exceeded. Per-well alpha = 0.01. Normality Test: multiple

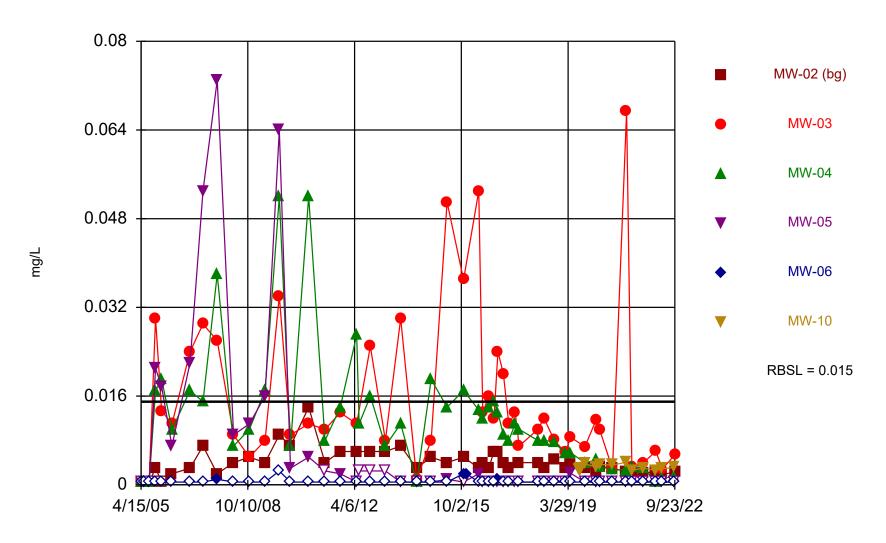


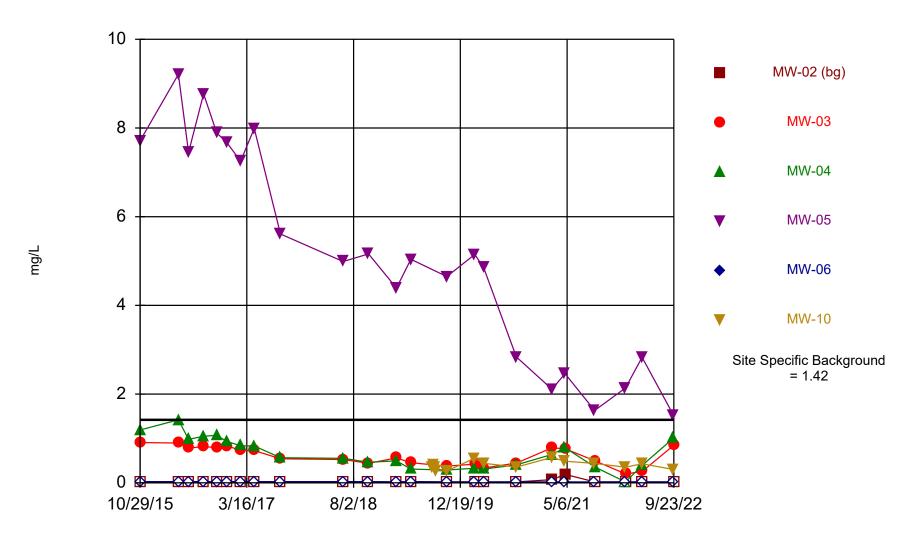

Compliance limit is exceeded.* Per-well alpha = 0.01. Normality Test: Shapiro Wilk, alpha based on n.

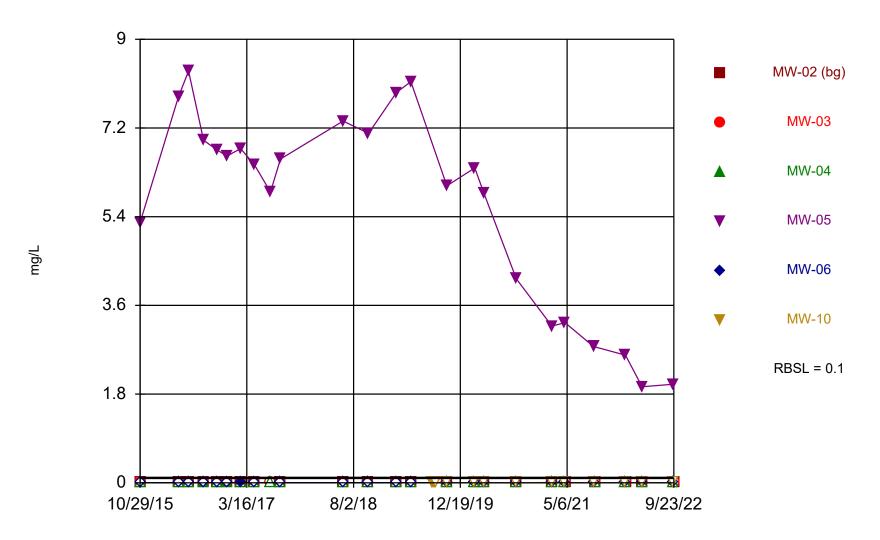



Compliance limit is exceeded.* Per-well alpha = 0.01. Normality Test: Shapiro Wilk, alpha based on n.



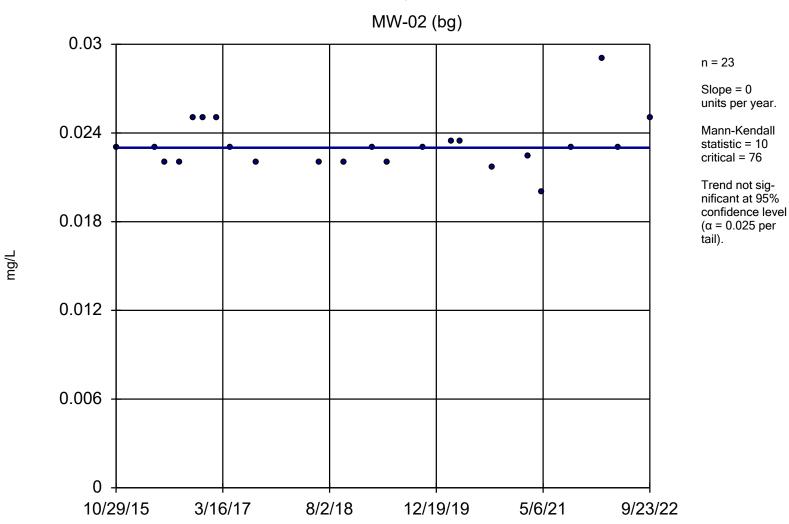


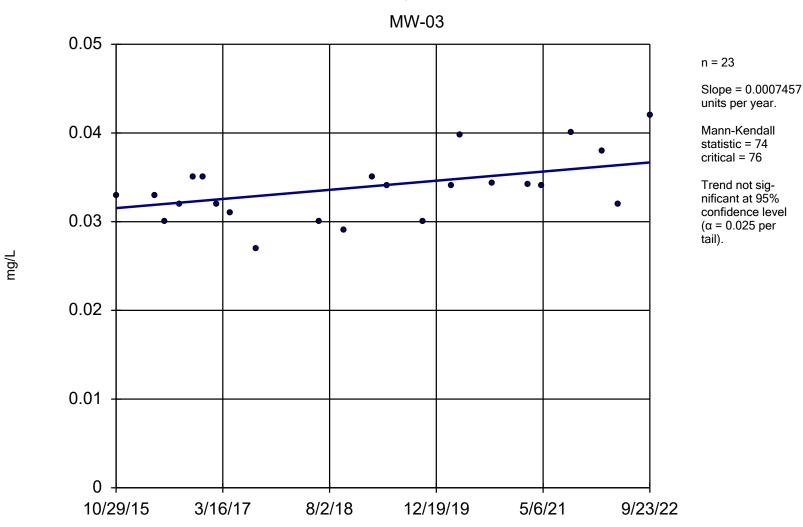


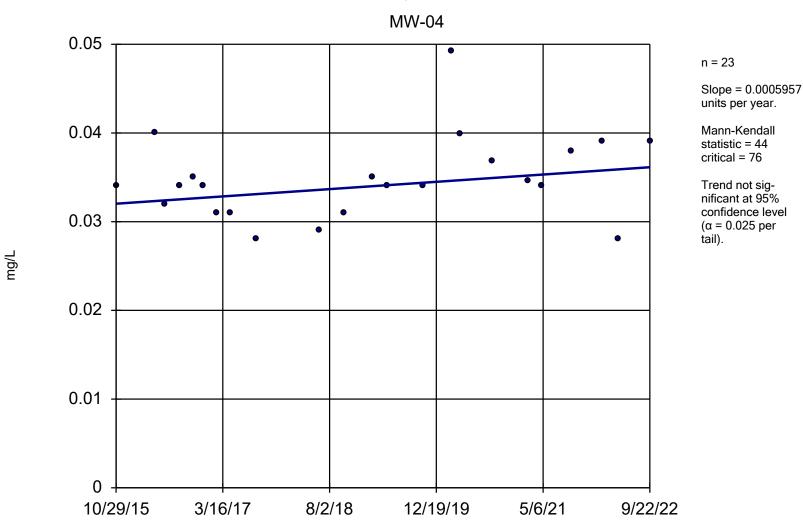


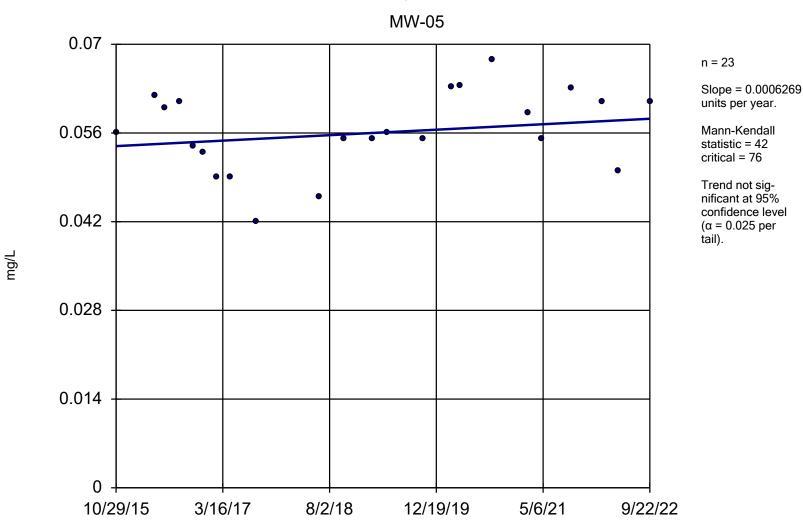
Constituent: Lead Analysis Run 11/11/2022 1:32 PM View: Landfill App IV

Constituent: Lithium Analysis Run 11/11/2022 1:32 PM View: Landfill App IV

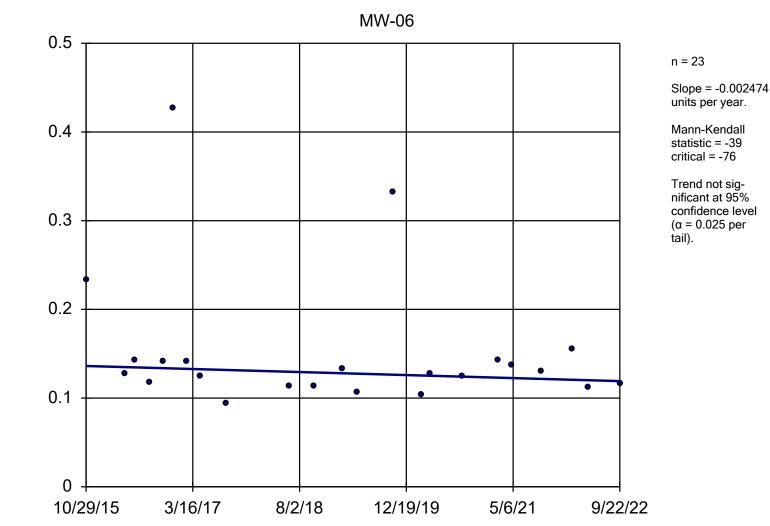


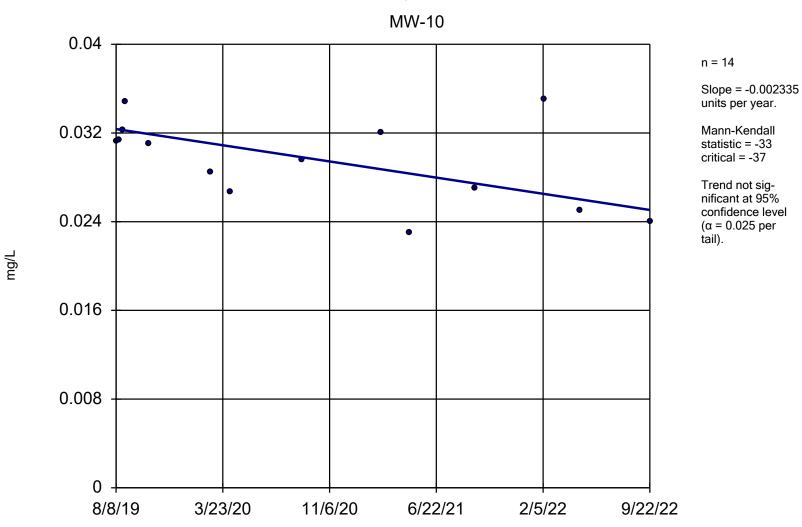

Tolerance Limit

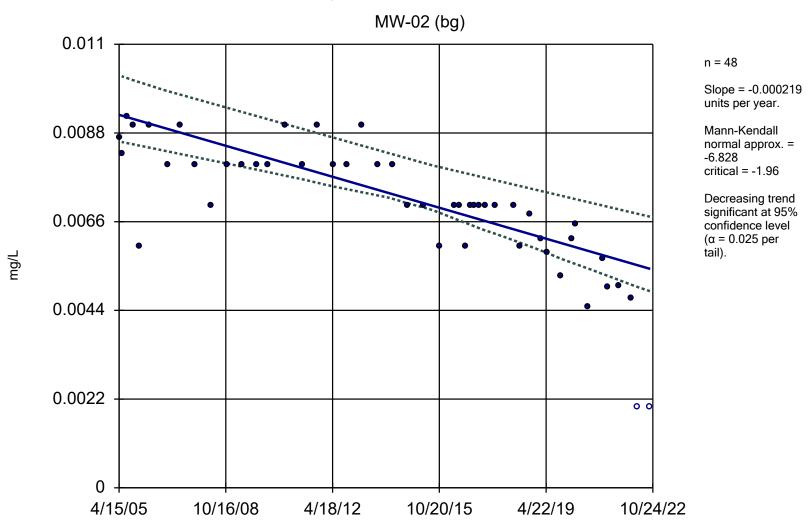

	RD Morrow Generating Facility		Client: Cooperative Energy		Data: RD I					
Constituent	Well	Upper Lim.	<u>Date</u>	Observ.	Sig.	Bg N	%NDs	<u>Transform</u>	<u>Alpha</u>	Method
Barium (mg/L)	n/a	0.029	n/a	n/a	n/a	23	0	n/a	0.3074	NP Inter(normal
Beryllium (mg/L)	n/a	0.009669	n/a	n/a	n/a	48	4.167	x^2	0.05	Inter
Cobalt (mg/L)	n/a	0.1749	n/a	n/a	n/a	23	0	No	0.05	Inter
Combined Radium (pCi/L)	n/a	3.136	n/a	n/a	n/a	23	30.43	No	0.05	Inter
Fluoride (mg/L)	n/a	1.109	n/a	n/a	n/a	24	4.167	No	0.05	Inter
Lead (mg/L)	n/a	0.009752	n/a	n/a	n/a	48	8.333	sqrt(x)	0.05	Inter
Lithium (mg/L)	n/a	1.42	n/a	n/a	n/a	69	31.88	n/a	0.02904	NP Inter(normal
Molybdenum (mg/L)	n/a	0.0025	n/a	n/a	n/a	23	100	n/a	0.3074	NP Inter(NDs)


Trend Test

		RD Morrow Generating Facility		Client: Cooperative Energy		Data: RI	D Morrow Ger	Printed 11/1	1/2022, 1:35 P	М	
Constituent	<u>Well</u>	<u>Slope</u>	Calc.	Critical	Sig.	<u>N</u>	%NDs	Normality	<u>Xform</u>	<u>Alpha</u>	Method
Barium (mg/L)	MW-02 (bg)	0	10	76	No	23	0	n/a	n/a	0.05	NP
Barium (mg/L)	MW-03	0.000	74	76	No	23	0	n/a	n/a	0.05	NP
Barium (mg/L)	MW-04	0.000	44	76	No	23	0	n/a	n/a	0.05	NP
Barium (mg/L)	MW-05	0.000	42	76	No	23	0	n/a	n/a	0.05	NP
Barium (mg/L)	MW-06	-0.00	-39	-76	No	23	0	n/a	n/a	0.05	NP
Barium (mg/L)	MW-10	-0.00	-33	-37	No	14	0	n/a	n/a	0.05	NP
Beryllium (mg/L)	MW-02 (bg)	-0.00	-6.828	-1.96	Yes	48	4.167	n/a	n/a	0.05	NP
Beryllium (mg/L)	MW-03	-0.00	-6.675	-1.96	Yes	49	51.02	n/a	n/a	0.05	NP
Beryllium (mg/L)	MW-04	-0.00	-6.211	-1.96	Yes	50	44	n/a	n/a	0.05	NP
Beryllium (mg/L)	MW-05	0	-4.156	-1.96	Yes	49	75.51	n/a	n/a	0.05	NP
Beryllium (mg/L)	MW-06	0	2.579	1.96	Yes	49	100	n/a	n/a	0.05	NP
Beryllium (mg/L)	MW-10	0.000	19	37	No	14	0	n/a	n/a	0.05	NP
Cobalt (mg/L)	MW-02 (bg)	-0.00	-124	-76	Yes	23	0	n/a	n/a	0.05	NP
Cobalt (mg/L)	MW-03	-0.00	-210	-81	Yes	24	0	n/a	n/a	0.05	NP
Cobalt (mg/L)	MW-04	-0.00	-151	-81	Yes	24	0	n/a	n/a	0.05	NP
Cobalt (mg/L)	MW-05	-0.00	-31	-81	No	24	0	n/a	n/a	0.05	NP
Cobalt (mg/L)	MW-06	0.000	43	76	No	23	0	n/a	n/a	0.05	NP
Cobalt (mg/L)	MW-10	0.008993	31	37	No	14	0	n/a	n/a	0.05	NP
Combined Radium (MW-02 (bg)	-0.05798	-39	-76	No	23	30.43	n/a	n/a	0.05	NP
Combined Radium (MW-03	-0.4817	-131	-76	Yes	23	17.39	n/a	n/a	0.05	NP
Combined Radium (MW-04	-0.4139	-157	-76	Yes	23	13.04	n/a	n/a	0.05	NP
Combined Radium (MW-05	-0.08332	-65	-76	No	23	30.43	n/a	n/a	0.05	NP
Combined Radium (MW-06	-0.06573	-33	-76	No	23	17.39	n/a	n/a	0.05	NP
Combined Radium (MW-10	0.04635	7	37	No	14	14.29	n/a	n/a	0.05	NP
Fluoride (mg/L)	MW-02 (bg)	0.03329	, 67	81	No	24	4.167	n/a	n/a	0.05	NP
Fluoride (mg/L)	MW-03	-0.1211	-146	-81	Yes	24	50	n/a	n/a	0.05	NP
Fluoride (mg/L)	MW-04	-0.1134	-133	-81	Yes	24	41.67	n/a	n/a	0.05	NP
Fluoride (mg/L)	MW-05	-0.1962	-162	-81	Yes	24	50	n/a	n/a	0.05	NP
Fluoride (mg/L)	MW-06	0.02792	182	81	Yes	24	95.83	n/a	n/a	0.05	NP
Fluoride (mg/L)	MW-10	-0.00	-3	-37	No	14	7.143	n/a	n/a	0.05	NP
Lead (mg/L)	MW-02 (bg)	-0.00	-1.531	-1.96	No	48	8.333	n/a	n/a	0.05	NP
Lead (mg/L)	MW-03	-0.00	-1.476	-1.96	No	49	6.122	n/a	n/a	0.05	NP
Lead (mg/L)	MW-04	-0.00	-4.064	-1.96	Yes	50	10	n/a	n/a	0.05	NP
Lead (mg/L)	MW-05	-0.00	-5.078	-1.96	Yes	50	68	n/a	n/a	0.05	NP
Lead (mg/L)	MW-06	0	-0.7087	-1.96	No	49	91.84	n/a	n/a	0.05	NP
Lead (mg/L)	MW-10	0.000	3	37	No	14	0	n/a	n/a	0.05	NP
Lithium (mg/L)	MW-02 (bg)	0	-79	-76	Yes	23	91.3	n/a	n/a	0.05	NP
Lithium (mg/L)	MW-03	-0.08976	-125	-76	Yes	23	0	n/a	n/a	0.05	NP
Lithium (mg/L)	MW-04	-0.1373	-133	-76	Yes	23	4.348	n/a	n/a	0.05	NP
Lithium (mg/L)	MW-05	-1.061	-197	-76	Yes	23	0	n/a	n/a	0.05	NP
Lithium (mg/L)	MW-06	-0.00	-130	-76	Yes	23	100	n/a	n/a	0.05	NP
Lithium (mg/L)	MW-10	0.009442	7	37	No	14	0	n/a	n/a	0.05	NP
Molybdenum (mg/L)	MW-02 (bg)	0	22	76	No	23	100	n/a	n/a	0.05	NP
Molybdenum (mg/L)	MW-02 (bg)	0	35	81	No	24	95.83	n/a	n/a	0.05	NP
Molybdenum (mg/L)	MW-04	0	-10	-81	No	24	91.67	n/a	n/a	0.05	NP
Molybdenum (mg/L)	MW-05	-0.8188	-10 - 177	-85	Yes	25	0	n/a	n/a	0.05	NP
Molybdenum (mg/L)	MW-06	0	31	76	No	23	91.3	n/a	n/a	0.05	NP
Molybdenum (mg/L)	MW-10	0	40	37	Yes	14	100	n/a	n/a	0.05	NP
		•		٠.	103					5.50	•••

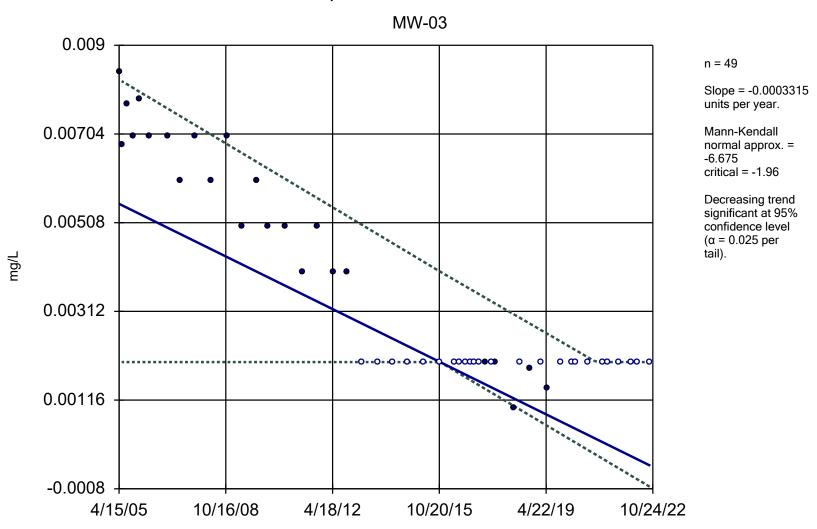


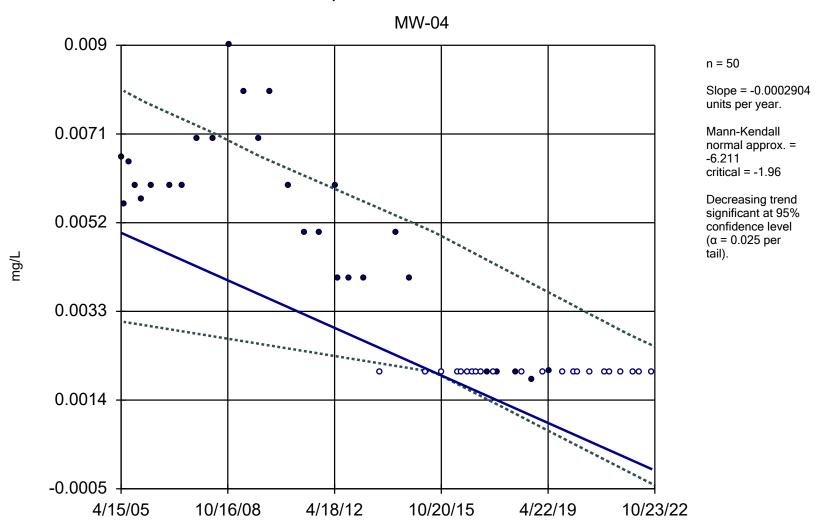




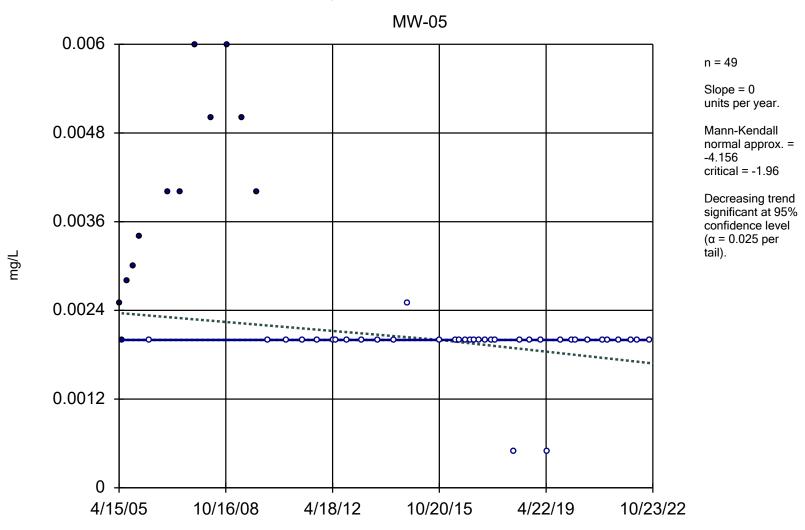
mg/L

Sen's Slope Estimator

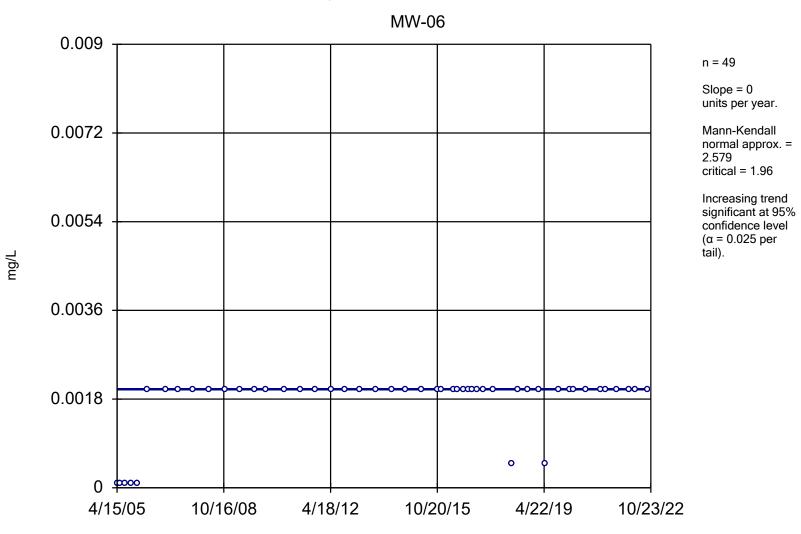


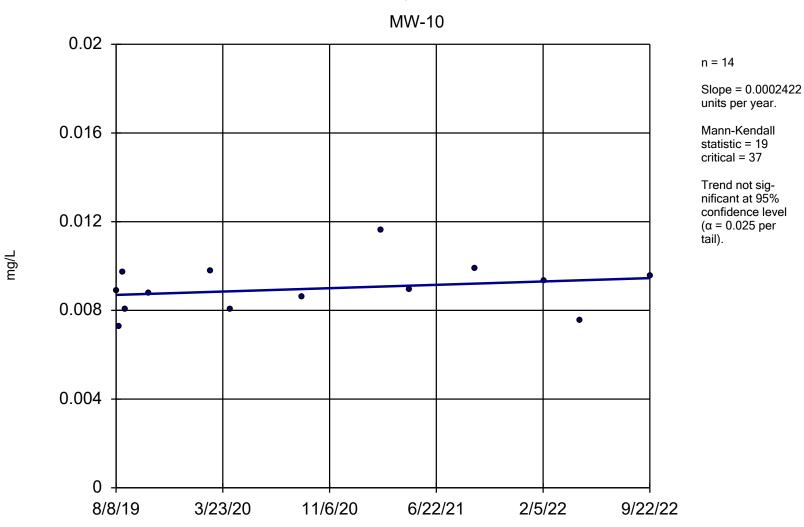

Constituent: Beryllium Analysis Run 11/11/2022 1:33 PM View: Landfill App IV

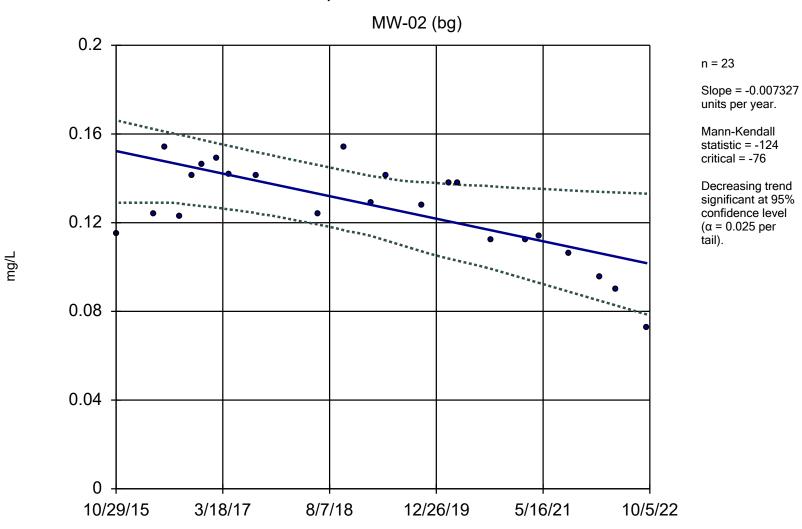
RD Morrow Generating Facility
Client: Cooperative Energy
Data: RD Morrow Gen

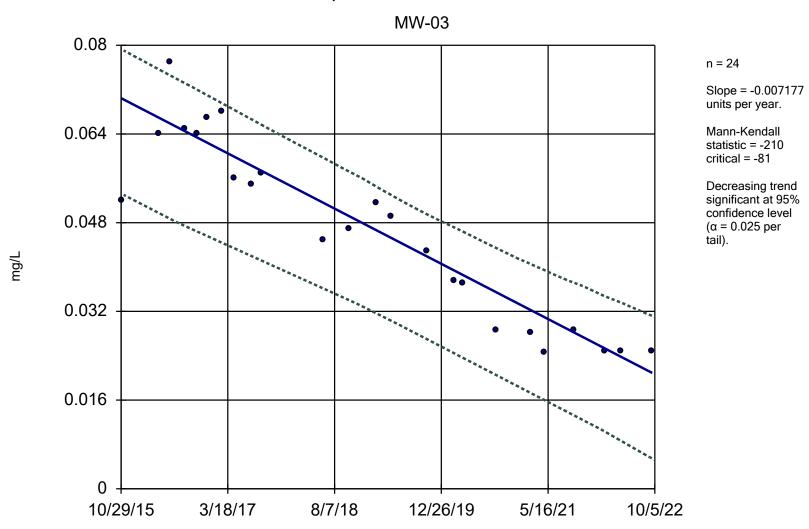

Constituent: Beryllium Analysis Run 11/11/2022 1:33 PM View: Landfill App IV

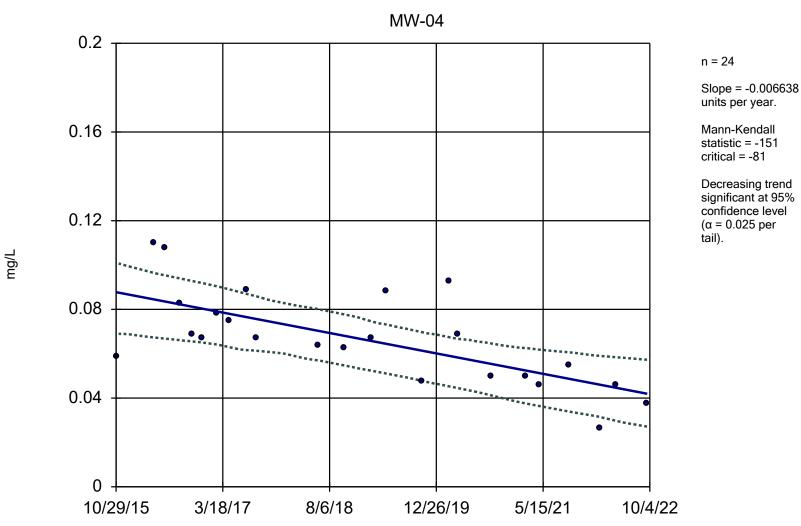
RD Morrow Generating Facility
Client: Cooperative Energy
Data: RD Morrow Gen

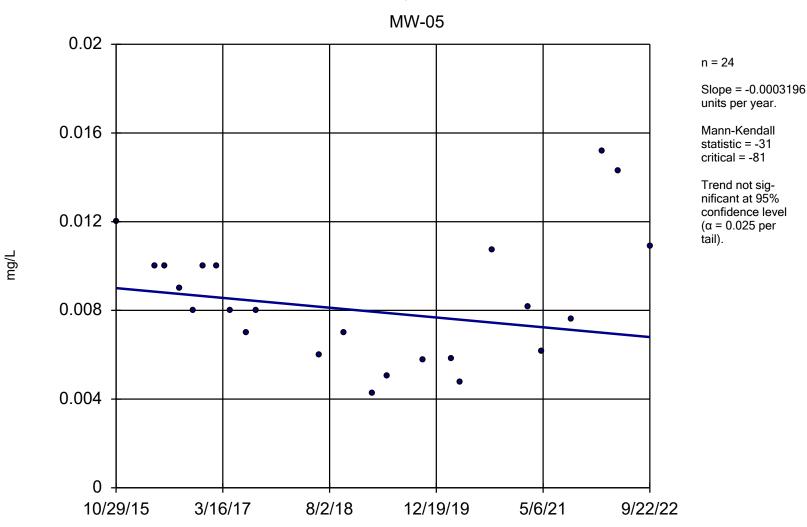


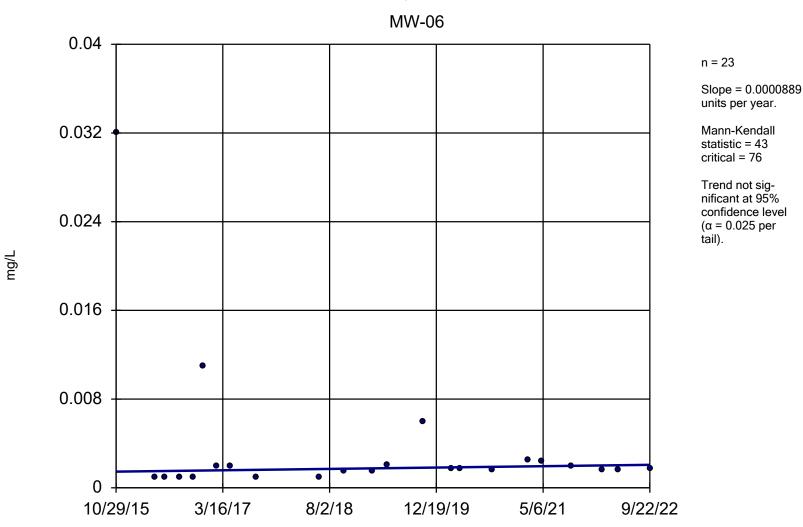

Constituent: Beryllium Analysis Run 11/11/2022 1:33 PM View: Landfill App IV

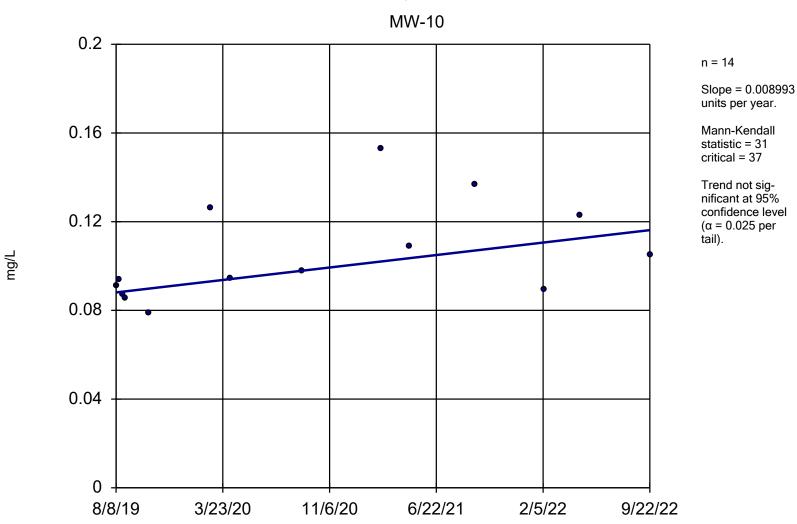

RD Morrow Generating Facility
Client: Cooperative Energy
Data: RD Morrow Gen

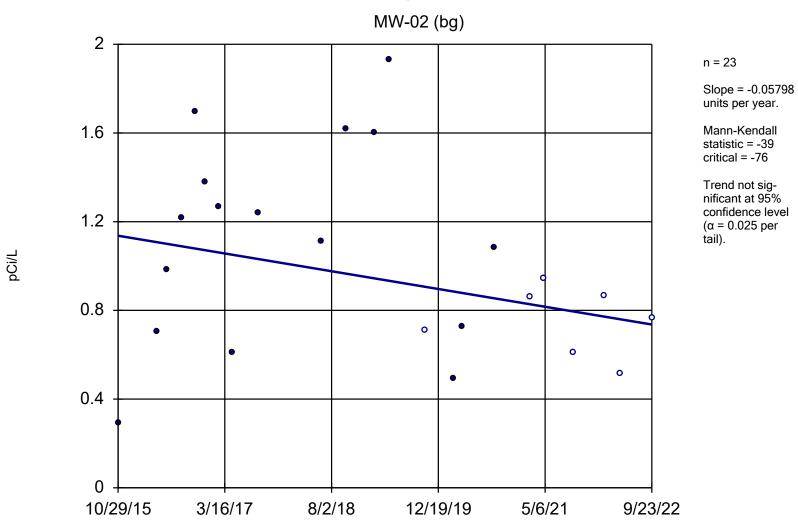



Constituent: Beryllium Analysis Run 11/11/2022 1:33 PM View: Landfill App IV

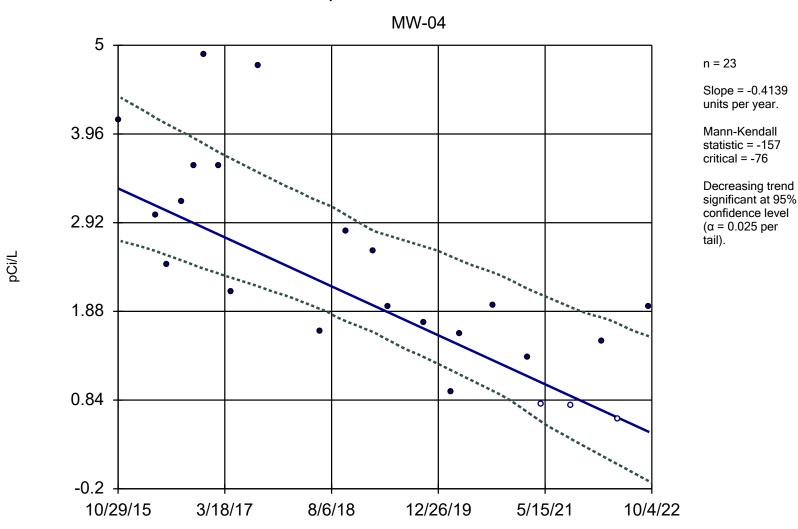


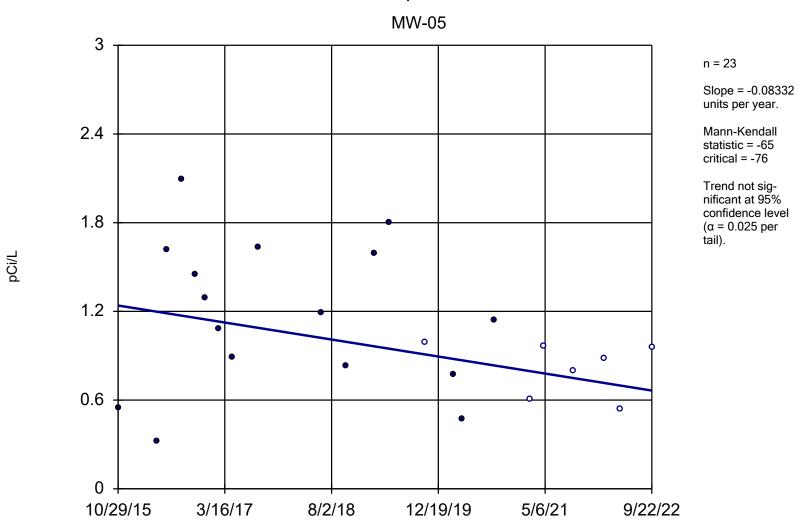


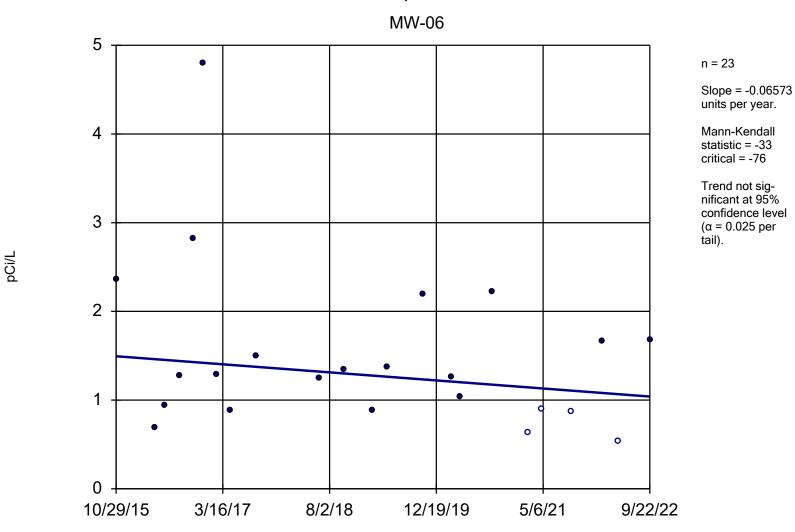


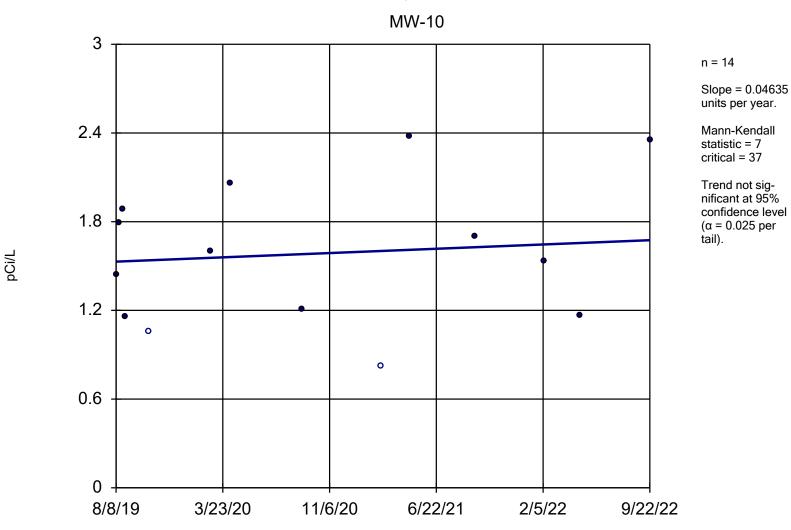


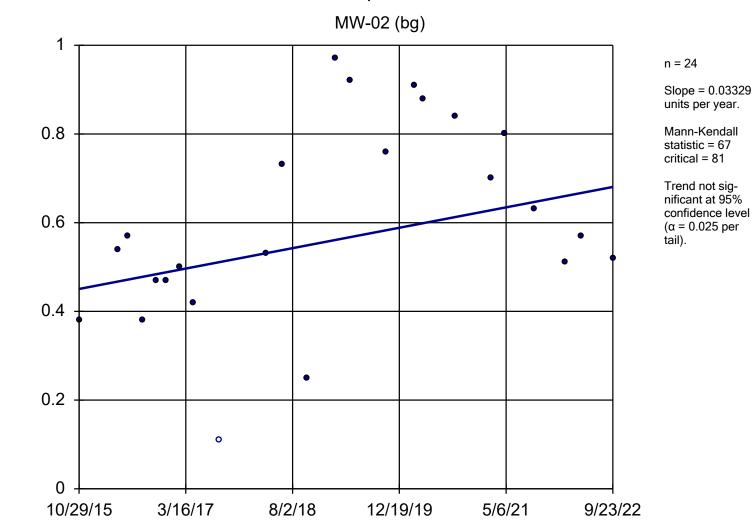


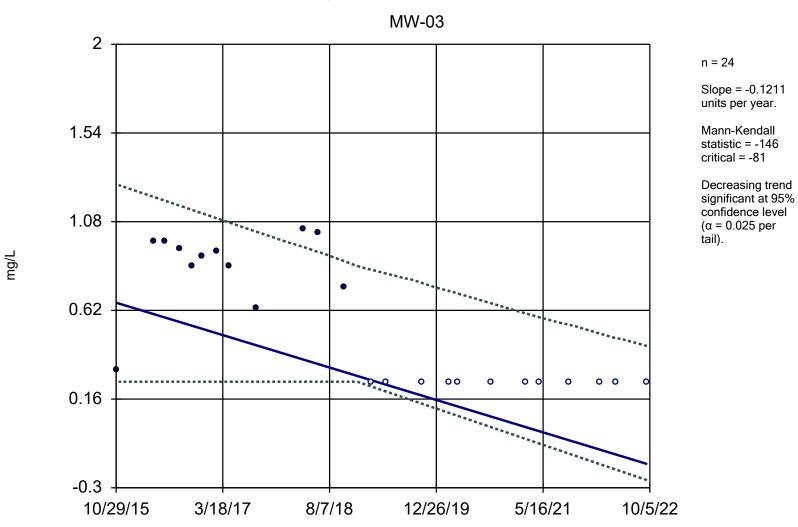


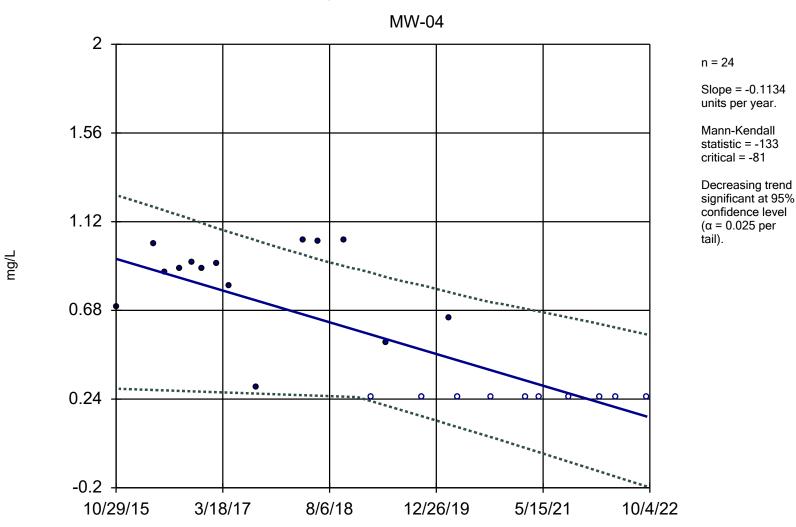




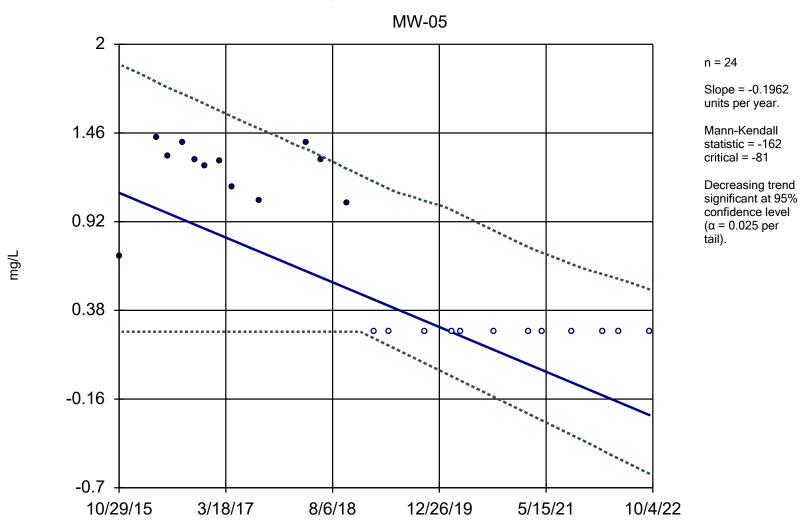


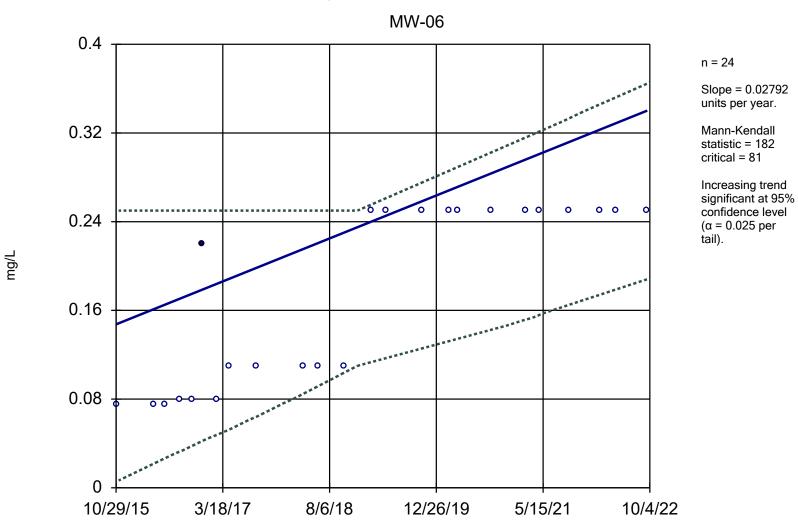


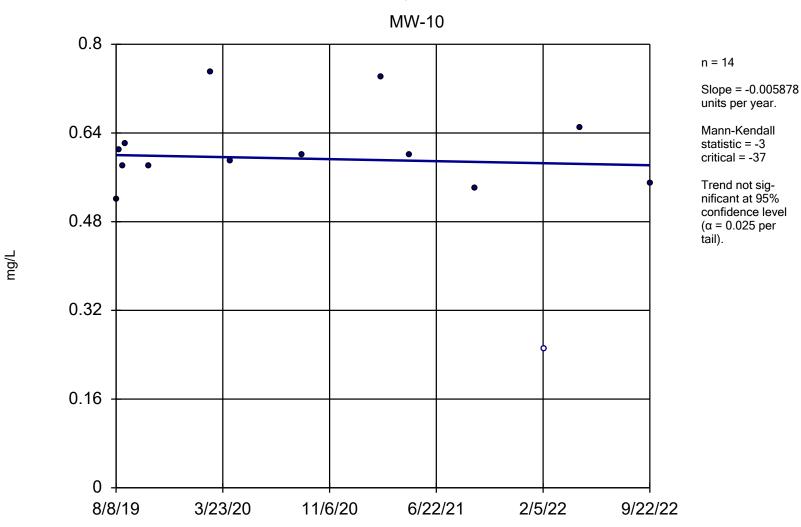


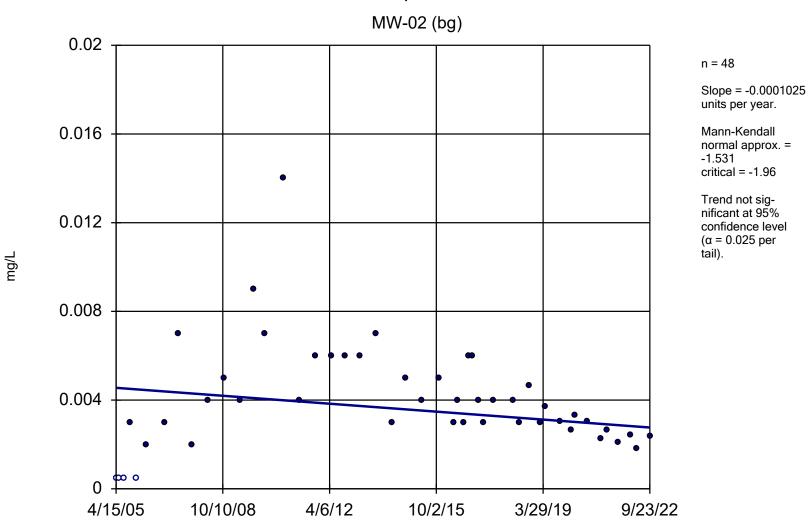


mg/L

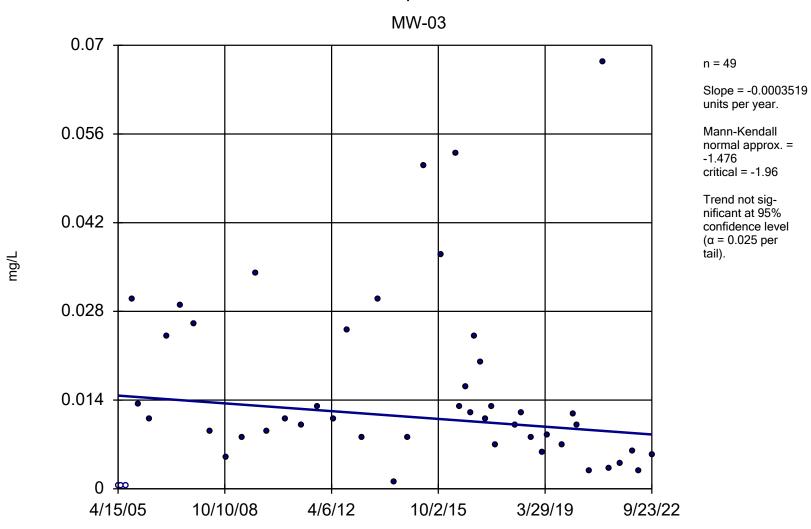

Sen's Slope Estimator



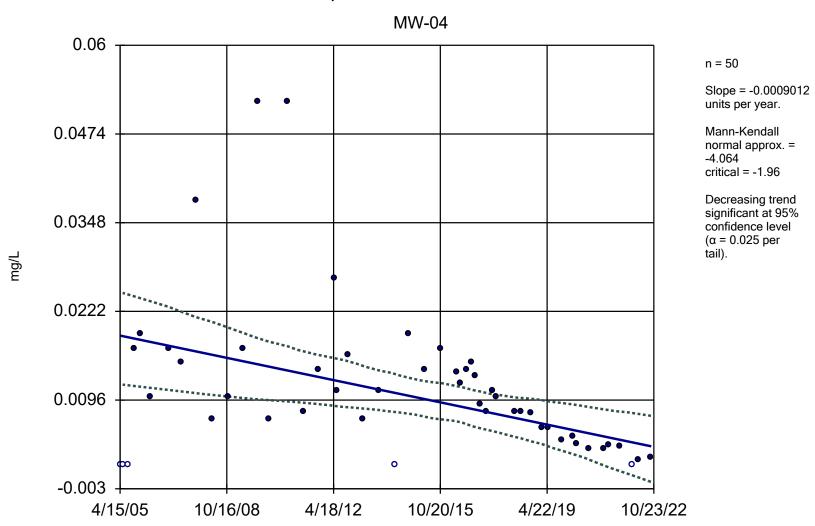

Constituent: Fluoride Analysis Run 11/11/2022 1:33 PM View: Landfill App IV

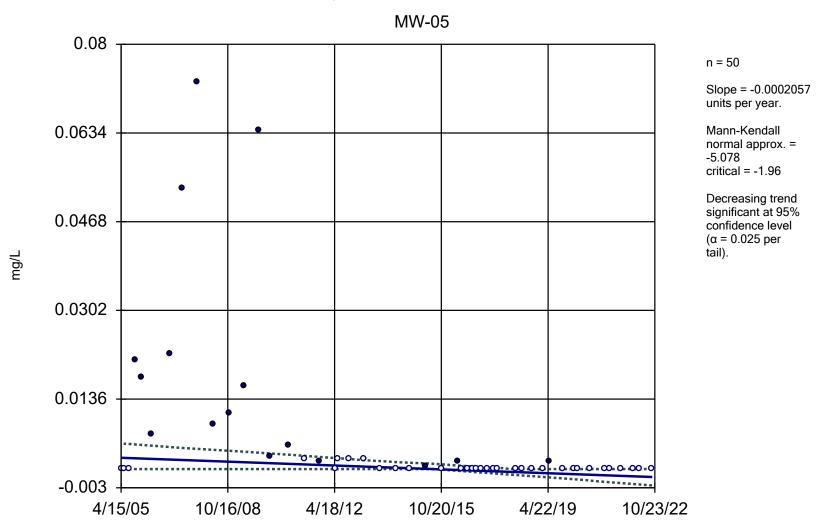


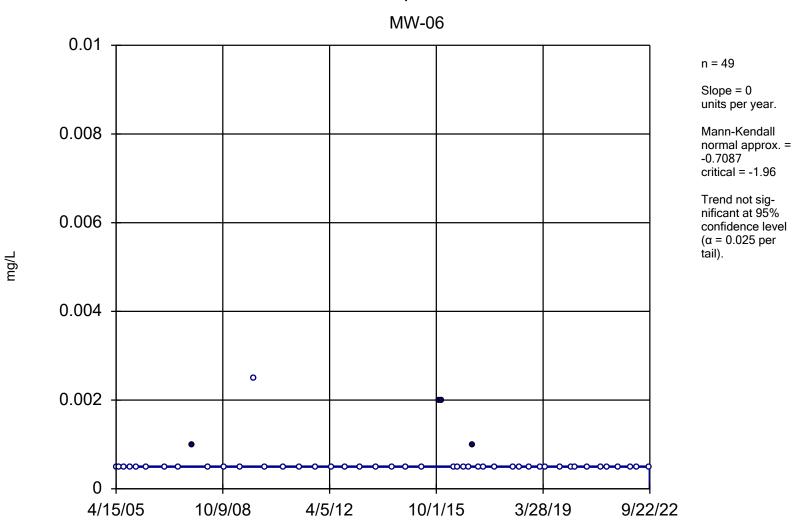
Constituent: Fluoride Analysis Run 11/11/2022 1:33 PM View: Landfill App IV

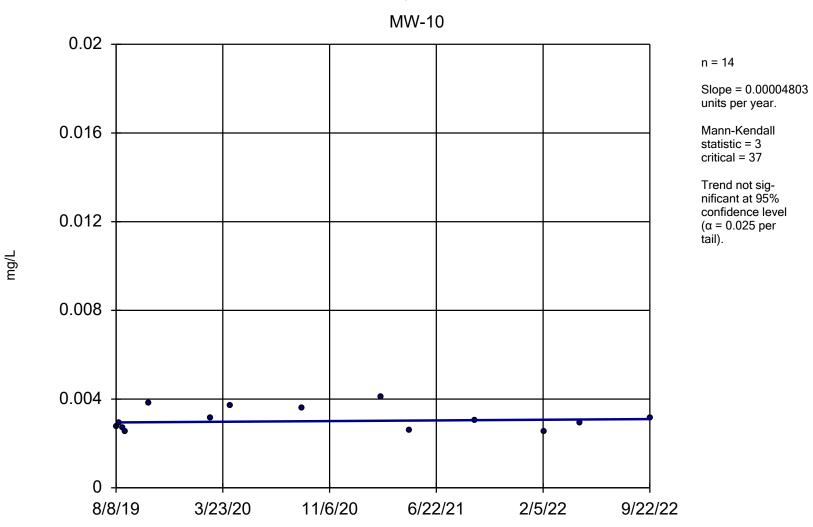


Constituent: Fluoride Analysis Run 11/11/2022 1:34 PM View: Landfill App IV

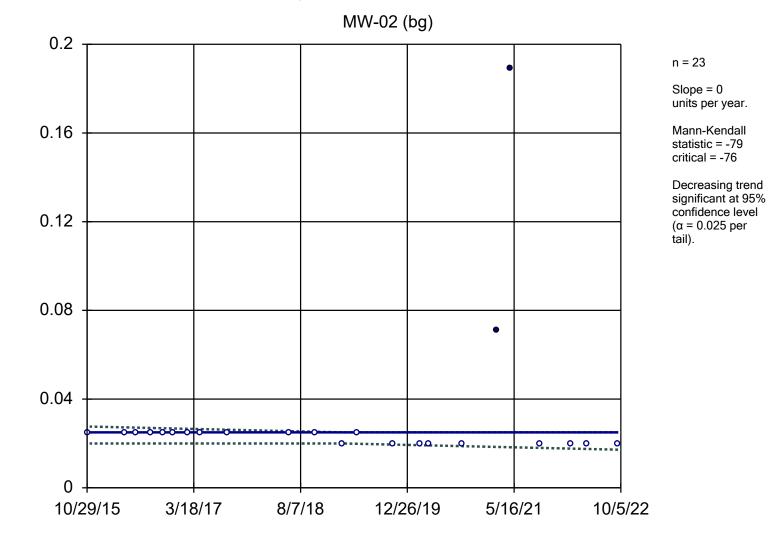



Constituent: Lead Analysis Run 11/11/2022 1:34 PM View: Landfill App IV

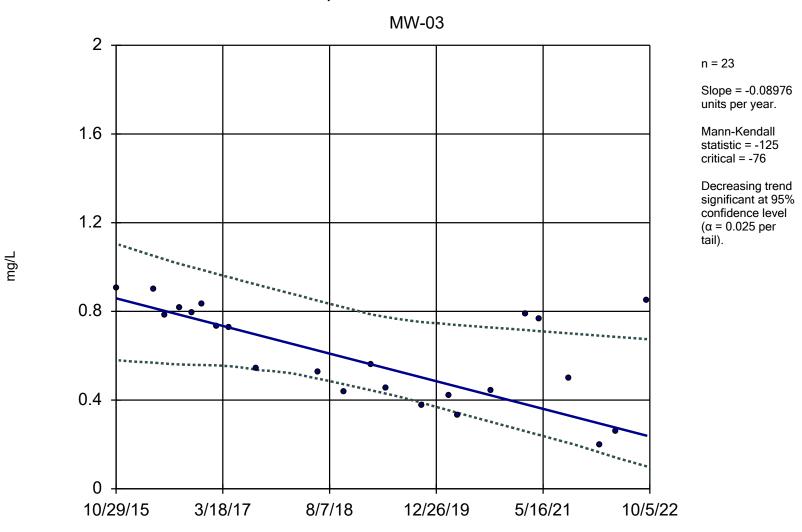

Constituent: Lead Analysis Run 11/11/2022 1:34 PM View: Landfill App IV

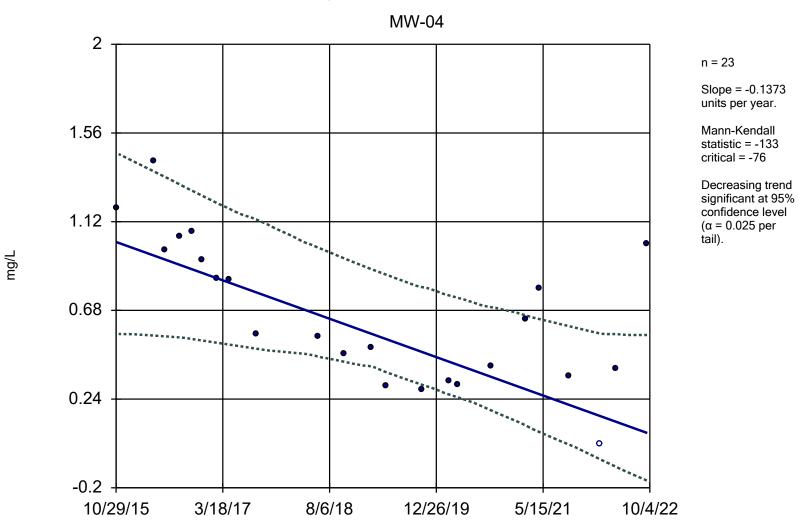

Constituent: Lead Analysis Run 11/11/2022 1:34 PM View: Landfill App IV

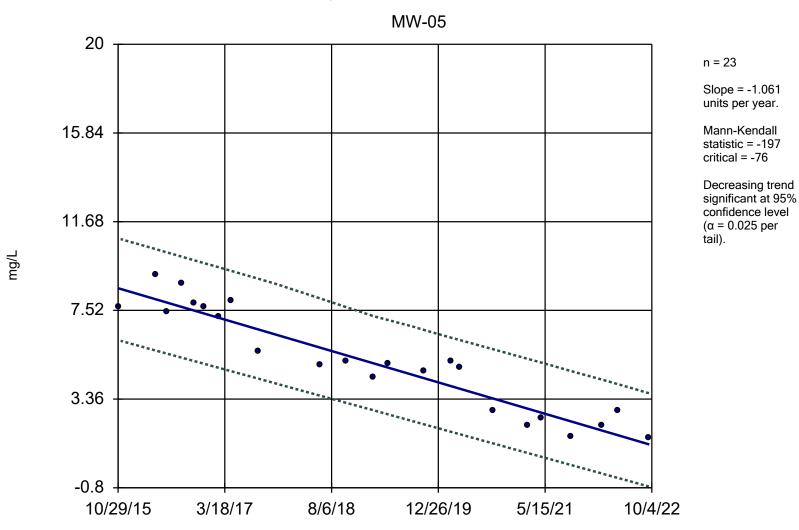
Constituent: Lead Analysis Run 11/11/2022 1:34 PM View: Landfill App IV

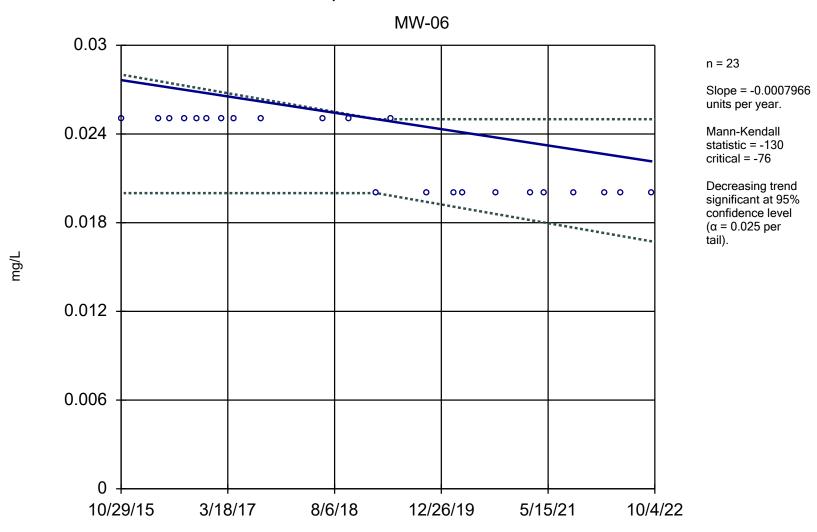


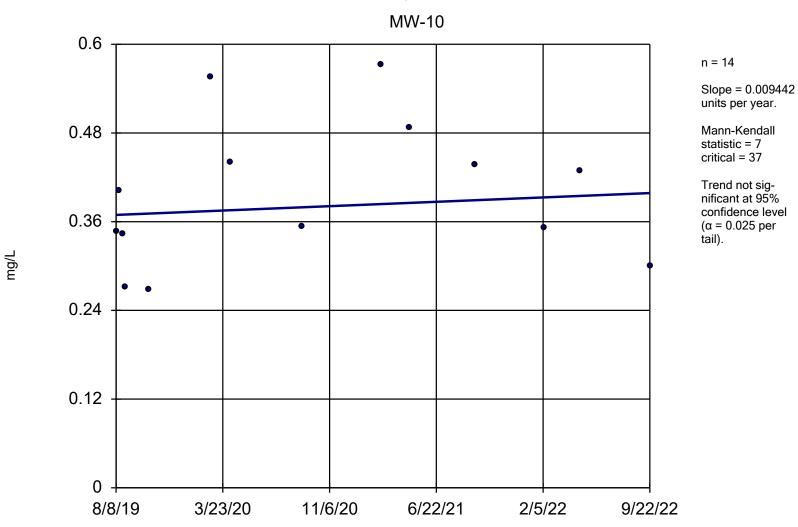
Constituent: Lead Analysis Run 11/11/2022 1:34 PM View: Landfill App IV




mg/L


Sen's Slope and 95% Confidence Band




Constituent: Lithium Analysis Run 11/11/2022 1:34 PM View: Landfill App IV

